Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (АС)
Шрифт:

При проектировании орбит весьма важны задачи о переходе искусственного небесного тела с одной орбиты на другую, т.к. часто или невозможно, или энергетически невыгодно осуществить запуск сразу на орбиту, отвечающую поставленной цели исследования. Могут ставиться задачи как о сравнительно небольшом исправлении (коррекции) орбит, так и о переходе на совершенно другую орбиту. С такими задачами сталкиваются, например, при осуществлении межпланетных перелётов, запуске ИСЛ или при запуске ИСЗ на стационарную орбиту вокруг Земли (см. Орбиты искусственных космических объектов). Эти задачи относятся к управляемым искусственным небесным телам, причём управление может осуществляться с помощью реактивных двигателей, включаемых или кратковременно в определённые моменты (тогда космический аппарат испытывает действие почти мгновенного толчка, импульса, сообщающего

дополнительную скорость), или же на достаточно длительное время (тогда создаётся постоянно действующая дополнительная тяга).

С математической точки зрения эти задачи заключаются в расчёте импульсов или дополнит, тяги (их размера, направления, момента и продолжительности действия), необходимых для желательного изменения орбиты. Сложность этих задач определяется главным образом тем, что переход с одной орбиты на другую желательно осуществить оптимальным образом (т. е. наилучшим с той или иной точки зрения). Чаще всего требуется, чтобы импульсы или дополнительная тяга сопровождались минимальным расходом энергии или чтобы переход на новую орбиту был произведён за возможно более короткий срок. Вопросы оптимального движения искусственных небесных тел с дополнит, тягой разрабатываются весьма интенсивно. Таковы, например, вопросы: о выборе оптимальной программы управления для доставки на круговую орбиту, расположенную на большой высоте над поверхностью Земли, максимального полезного груза в заданное время; о расчёте минимального времени перелёта Земля — Марс — Земля для космического аппарата с малой тягой; об оптимальном многоимпульсном переходе между произвольными эллиптическими орбитами ИСЗ; о межпланетном перелёте в кратчайший срок с орбиты Земли на более далёкие планеты с помощью солнечного паруса (установки, использующей давление солнечного излучения). К этому кругу относятся также задачи о возвращении космического аппарата на Землю с учётом торможения в атмосфере или о посадке его на Луну или планеты.

Задачи выработки программы оптимального управления движением при переходе с одной орбиты на другую являются совершенно новыми по сравнению с задачами классической небесной механики, и их решение требует, как правило, применения методов математической теории управления (метода динамического программирования, метода максимума Понтрягина и др.). Практическое использование математических результатов А. в задачах перехода с одной орбиты на другую тесно связано с инженерно-техническими вопросами конструирования аппаратов, их автоматического управления. Примерами таких переходов, впервые осуществленных в СССР, являются возвращение на Землю 2-го космического корабля-спутника (20 августа 1960), мягкая посадка космического аппарата «Луна-9» (3 февраля 1966) на Луну, достижение космическим зондом «Венера-4» (18 октября 1967) планеты Венера, создание ИСЛ «Луна-IO» (1 апреля 1966), возвращение на Землю космического аппарата «Зонд-5» (21 сентября 1968). В США (20 июля 1969) осуществлена первая высадка космонавтов на Луну, сопровождавшаяся рядом переходов, в том числе взлётом с лунной поверхности на селеноцентрическую орбиту и последующим переходом на орбиту полёта к Земле.

Построение аналитических, полуаналитических или численных теорий движения искусственных небесных тел, позволяющих рассчитывать их положение в пространстве на тот или иной момент времени в зависимости от начального положения и скорости, от параметров гравитационных и других действующих пассивных и активных сил, занимает в А. такое же значительное место, как и в классической небесной механике. Разработка этих теорий сталкивается с различными специфическими трудностями математического характера ввиду сложности уравнений движения и невозможности ограничиться методами, разработанными в классической небесной механике.

Большое значение для А. имеют вопросы, связанные с анализом и проектированием вращательного движения искусственных небесных тел относительно их центра инерции. Во многих случаях для выполнения поставленной программы космических исследований требуется знать, как изменяется ориентация космического аппарата в пространстве в ходе его поступательного перемещения по орбите; часто необходимо, чтобы космический аппарат оставался в течение длительного времени ориентированным определённым образом, например относительно Земли и Солнца. Возникающая проблема изучения вращательного движения значительно более сложна, чем аналогичная проблема вращения естественных небесных тел в классической небесной механике вследствие того, что на вращение искусственных небесных тел существенное влияние оказывают вращательные моменты, возникающие в результате сопротивления атмосферы (аэродинамические эффекты), действия магнитных сил, светового давления. Кроме того, космические аппараты обладают, как правило, сложной динамической формой, приводящей к математическим трудностям при учёте вращательных моментов гравитационных сил.

Проектирование вращательного движения сводится главным образом к проблеме стабилизации ориентации космического аппарата по отношению к выбранной системе координат. Разрабатываются методы стабилизации с помощью вращающихся маховиков на борту космического аппарата (гироскопических стабилизаторов) и реактивных двигателей, а также с помощью дополнительных конструкций (т. н. пассивных систем стабилизации), использующих для стабилизации действие естественных сил (гравитационных, магнитных и др.). В этом разделе А. решаются, например, задачи об оптимальной стабилизации осесимметричного ИСЗ с помощью реактивных двигателей; о конструкции системы гравитационной стабилизации ИСЗ, движущегося на круговой орбите; об использовании влияний гравитационного и светового поля Солнца на космический аппарат в межпланетном пространстве для осуществления его устойчивой ориентации относительно Солнца.

А. не только выдвигает новые задачи и требования разработки новых методов, но также заставляет пересмотреть и ряд «старых» задач классической небесной механики, относящихся к естественным небесным телам. Например, точные расчёты межпланетных перелётов невозможны без самых точных данных о движении планет, об их массах, о расстояниях между планетами. Точность имевшихся до недавнего времени теорий движений планет оказывается в ряде случаев недостаточной. Разрабатываются более совершенные теории, позволяющие уточнить массы планет. Продолжаются исследования по уточнению астрономической единицы — основной единицы масштаба в небесной механике.

См. также Искусственные спутники Земли, Космические зонды, Орбиты искусственных космических объектов.

Лит.: Дубошин Г. Н., Охоцимский Д. Е., Некоторые проблемы астродинамики и небесной механики, «Космические исследования», 1963, т. 1, в. 2; Проблемы движения искусственных небесных тел, М., 1963; Балк М. Б., Элементы динамики космического полёта, М., 1965; Егоров В. А., Пространственная задача достижения Луны, М., 1965; Эльясберг П. Е., Введение в теорию полёта искусственных спутников Земли, М., 1965; Проблемы ориентации искусственных спутников Земли, пер. с англ., М., 1966; Кинг-Хили Д., Теория орбит искусственных спутников в атмосфере, пер. с англ., М., 1966; Белецкий В. В., Движение искусственного спутника относительно центра масс, М., 1965: Левантовский В. И., Небесная баллистика, М., 1965; Демин В. Г., Движение искусственного спутника в нецентральном поле тяготения, М., 1968.

Ю. А. Рябов.

Астроида

Астро'ида, плоская кривая. См. Линия.

Астроинерциальная навигация

Астроинерциа'льная навига'ция , метод навигации космического летательного аппарата, комбинирующий средства инерциальной системы навигации и астрономической навигации. Основная цель — астрокоррекция гиростабилизированных платформ.

Астроклимат

Астрокли'мат, см. Астрономический климат.

Астроколориметрия

Астроколориметри'я (от астро..., лат. color — цвет и греч. metreo — измеряю), раздел практической астрофизики, занимающийся определением цвета небесных объектов, главным образом звёзд. Введение (начало 20 в.) в астрономическую практику различных показателей цвета позволило количественно характеризовать цвет объекта либо длиной волны, которая в его излучении наиболее активно действует на приёмник излучения — глаз, фотоэмульсию, фотокатод (т. н. действующая, эффективная, изофотная длина волны), либо отношением освещённостей или световых потоков, приходящих от объекта в двух или нескольких достаточно разных, но широких областях спектра, например в областях спектра, воспринимаемых соответственно глазом и несенсибилизированной фотографической эмульсией. В 40-х гг. 20 в. стал широко применяться метод электрофотометрического сравнения световых потоков, поступающих либо на фотокатод от объекта в двух или нескольких областях спектра, выделяемых светофильтрами, либо на фотокатоды с разной спектральной чувствительностью. Отношение фототоков переводится в логарифмическую шкалу и выражается в звёздных величинах.

Поделиться:
Популярные книги

Утопающий во лжи 4

Жуковский Лев
4. Утопающий во лжи
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Утопающий во лжи 4

Пожиратель душ. Том 1, Том 2

Дорничев Дмитрий
1. Демон
Фантастика:
боевая фантастика
юмористическая фантастика
альтернативная история
5.90
рейтинг книги
Пожиратель душ. Том 1, Том 2

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Провинциал. Книга 3

Лопарев Игорь Викторович
3. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 3