Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ДИ)
Шрифт:

Лит.: Жебелев С. А., Северное Причерноморье. Исследования и статьи по истории Северного Причерноморья античной эпохи, М. — Л., 1953, с. 82—115; Гайдукевич В. Ф., Еще раз о восстании Савмака, «Вестник древней истории», 1962, №1.

Диофантовы приближения

Диофа'нтовы приближе'ния, часть теории чисел, изучающая приближения действительных чисел рациональными числами, или, при более широком понимании предмета, вопросы, связанные с решением в целых числах линейных и нелинейных неравенств или систем неравенств с действительными коэффициентами. Д. п. названы по имени древнегреческого математика Диофанта, который занимался задачей решения алгебраических уравнений в целых числах — так называемых диофантовых уравнений. Методы теории Д. п. основаны на применении непрерывных дробей, Фарея рядов и Дирихле

принципа.

Задача о приближении одного числа рациональными дробями решается с помощью всех этих трёх методов и особенно с применением непрерывных дробей. Приближение действительного числа a подходящими дробями pklqk разложения a в непрерывную дробь характеризуется неравенством |a — pk/qk| < 1/qk2; с другой стороны, если несократимая дробь a/b удовлетворяет неравенству |a — а/b | < 1/2b2, то она является подходящей дробью разложения a в непрерывную дробь. Глубокие исследования о приближении действительных чисел a рациональными дробями принадлежат А. А. Маркову (старшему). Существует много расширений задачи о приближении числа рациональными дробями; к ним прежде всего относится задача об изучении выражений xq — у — a, где q и a — некоторые действительные числа, а х и у принимают целые значения (так называемая неоднородная одномерная задача). Первые результаты в решении этой задачи принадлежат П. Л. Чебышеву. Среди разнообразных теорем о приближённом решении в целых числах систем линейных уравнений (многомерные задачи Д. п.) особенно известна теорема, принадлежащая Л. Кронекеру: если a1,..., an — действительные числа, для которых равенство a1a1 +...+anan = 0 с целыми a1,..., an возможно лишь при a1 =... = an = 0, a b1,..., bn — некоторые действительные числа, то при любом заданном e > 0 можно найти число t и такие целые числа х1,..., xn, что выполняются неравенства |tak– bkxk| < e, k = 1,2,..., n. Для решения многомерных задач Д. п. весьма плодотворным является принцип Дирихле. Методы, основанные на принципе Дирихле, позволили А. Я. Хинчину и др. учёным построить систематическую теорию многомерных Д. п. Для теории Д. п. важное значение имеет связь с геометрией, основанная на том, что систему линейных форм с действительными коэффициентами можно изобразить как решётку в n– мepном арифметическом пространстве. В конце 19 в. Г. Минковский доказал ряд геометрических теорем, имеющих приложения в теории Д. п.

В вопросах нелинейных Д. п. замечательные результаты получил И. М. Виноградов. Созданные им методы занимают центральное место в этой области теории чисел. Одной из важнейших задач теории Д. п. является проблема приближения алгебраических чисел рациональными.

К Д. п. относится теория трансцендентных чисел, в которой находят оценки для модулей линейных форм и многочленов от одного и нескольких чисел с целыми коэффициентами. Теория Д. п. тесно связана с решением диофантовых уравнений и с различными задачами аналитической теории чисел.

Лит.: Виноградов И. М., Метод тригонометрических сумм в теории чисел, М., 1971; Гельфонд А. О., Приближение алгебраических чисел алгебраическими же числами и теория трансцендентных чисел, «Успехи математических наук», 1949, т. 4, в. 4; Фельдман Н. И., Шидловский А. Б., Развитие и современное состояние теории трансцендентных чисел, там же, 1967, т. 22, в. 3; Хинчин А. Я., Цепные дроби, 3 изд., М., 1961; Koksma J. F., Diophantische Approximationen, B., 1936.

Диофантовы уравнения

Диофа'нтовы уравне'ния (по имени древнегреческого математика Диофанта), алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения. Понятие Д. у. в современной математике расширено: это уравнения, у которых разыскиваются решения в алгебраических числах. Д. у. называются также неопределёнными. Простейшее Д. у. ax + by = 1, где а и b — целые взаимно простые числа, имеет бесконечно много решений: если x и у — одно решение, то числа х = x + bn, у = yan (n — любое целое число) тоже будут решениями. Так, все целые решения уравнения 2x + 3у = 1 получаются по формулам х = 2 + 3n, у = - 1 — 2n (здесь x = 2, у = - 1). Другим примером Д. у. является x2 + у2 = z2. Целые положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Все тройки взаимно простых пифагоровых чисел можно получить по формулам х = m2n2, у = 2mn, z = m2 + n2, где m и n — целые числа (m> n > 0).

Диофант в сочинении «Арифметика» занимался разысканием рациональных (не обязательно целых) решений специальных видов Д. у. Общая теория решения Д. у. первой степени была создана в 17 в. французским математиком К. Г. Баше; к началу 19 в. трудами П. Ферма, Дж. Валлиса, Л. Эйлера, Ж. Лагранжа и К. Гаусса в основном было исследовано Д. у. вида

ах2 + bxy + су2 + dx + еу + f = 0,

где а, b, с, d, е, fцелые числа, т. е. общее неоднородное уравнение второй степени с двумя неизвестными. Ферма утверждал, например, что Д. у. x2dy2 = 1 (Пелля уравнение), где d — целое положительное число, не являющееся квадратом, имеет бесконечно много решений. Валлис и Эйлер дали способы решения этого уравнения, а Лагранж доказал бесконечность числа решений. С помощью непрерывных дробей Лагранж исследовал общее неоднородное Д. у. второй степени с двумя неизвестными. Гаусс построил общую теорию квадратичных форм, являющуюся основой решения некоторых типов Д. у. В исследованиях Д. у. степени выше второй с двумя неизвестными были достигнуты серьёзные успехи лишь в 20 в. А. Туз установил, что Д. у.

axn + a1xn-1y +... + anyn = с

(где n &sup3; 3, a, а1,..., an, с — целые и многочлен atn + a1, tn-1

Поделиться:
Популярные книги

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Чемпион

Демиров Леонид
3. Мания крафта
Фантастика:
фэнтези
рпг
5.38
рейтинг книги
Чемпион

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Я граф. Книга XII

Дрейк Сириус
12. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я граф. Книга XII

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Темный Охотник

Розальев Андрей
1. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник

Вираж бытия

Ланцов Михаил Алексеевич
1. Фрунзе
Фантастика:
героическая фантастика
попаданцы
альтернативная история
6.86
рейтинг книги
Вираж бытия

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Большие дела

Ромов Дмитрий
7. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Большие дела

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну