Большая Советская Энциклопедия (ЭЙ)
Шрифт:
2) Э. ф., дающая разложение функции sin х в бесконечное произведение (1740):
3) Тождество Эйлера о простых числах:
где s = 1, 2,..., и произведение берётся по всем простым числам р.
4) Тождество Эйлера о четырёх квадратах:
(a2 +b2+ c2 + d2 )(p2 + q2 + r2 + s2 = x2+y2+z2+t2 ,
5) формула Эйлера о кривизнах (1760):
Она даёт выражение кривизны 1/R любого нормального сечения поверхности через её главные кривизны 1/R1 и 1/R2 и угол j между одним из главных направлений и данным направлением.
Эйлеру принадлежит также Эйлера—Маклорена формула суммирования, Эйлера—Фурье формулы для коэффициентов разложений функций в тригонометрические ряды .
Лит. см. при ст. Эйлер .
Эйлера функция
Э'йлера фу'нкция, число j(а ) натуральных чисел, меньших, чем а , и взаимно простых с а :
где p1 ,... , pk — простые делители числа а. Введена Л. Эйлером в 1760—61. Если числа а и b взаимно просты, тоj(ab ) = j(а ) j(b ). При т> 1 и наибольшем общем делителе (а , m ) = 1, а , m — взаимно просты, имеет место сравнение aj(m )= 1 (mod m ) (теорема Эйлера). Э. ф. встречаются во многих вопросах чисел теории .
Эйлера числа
Э'йлера чи'сла в математике, целые числа Еп , являющиеся коэффициентами при tn /n !, в разложении функции 1/ cht (см. Гиперболические функции ) в степенной ряд:
Введены Л. Эйлером в 1755. Э. ч. связаны рекуррентным соотношением (Е +1) n +(E ¾1) n = 0, n = 1, 2, 3,..., E0 = 1 (после возведения в степень надо вместо Ek подставить Ek ) и с Бернулли числами— соотношениями
Встречаются в различных формулах математического анализа.
Эйлера число
Э'йлера число', один из подобия критериев движения жидкостей или газов. Характеризует соотношение между силами давления, действующими на элементарный объём жидкости или газа, и инерционными силами. Э. ч. Eu определяют формулой
(иногда 2p/ ru2 ), где p2 , p1 — давления в двух характерных точках потока (или движущегося в нём тела), ru2 /2— скоростной напор, r — плотность жидкости или газа, u — скорость течения (или скорость тела). В случае течений жидкости с кавитацией аналогичный критерий называется числом кавитации
где p — характерное давление, рн— давление насыщенных паров жидкости. В сжимаемых газовых потоках Э. ч. в форме Eu = 2p/ ru2 связано с другими критериями подобия — Маха числом М и отношением удельных теплоёмкостей среды g — формулой Eu = 2/ gM2 , где g = c p /cv (cp— удельная теплоёмкость при постоянном давлении, cv — то же при постоянном объёме). Названо по имени Л. Эйлера .
Эйлера-Маклорена формула
Э'йлера—Макло'рена фо'рмула, формула суммирования, связывающая частные суммы ряда с интегралом и производными его общего члена:
где Bv —Бернулли числа , Rn — остаточный член. Э.—М. ф. применяется для приближённого вычисления определённых интегралов, для исследования сходимости рядов, для вычисления сумм и для разложения функций в ряд Тейлора. Например, при m = 1, р = 0, n = 2m + 1,