Большая Советская Энциклопедия (ГИ)
Шрифт:
Основные уравнения Г. получаются путём применения общих законов физики к элементарной массе, выделенной в жидкости, с последующим переходом к пределу при стремлении к нулю объёма, занимаемого этой массой. Одно из уравнений, называемое неразрывности уравнением, получается путём применения к элементу, выделенному в жидкости, закона сохранения массы: другое уравнение (или в проекциях на оси координат — три уравнения) получается в результате применения к элементу жидкости закона о количестве движения, согласно которому изменение количества движения элемента должно совпадать по величине и направлению с импульсом силы, приложенной к нему. Решение общих уравнений Г. исключительно сложно и может быть доведено до конца не всегда, а только в небольшом числе частных случаев. Поэтому приходится упрощать задачи путём отбрасывания в уравнениях членов, которые в данных условиях имеют
В Г. идеальной жидкости особенно важное значение имеет Бернулли уравнение, согласно которому вдоль струйки жидкости имеет место следующее соотношение между давлением р, скоростью v течения жидкости (с плотностью r) и высотой z над плоскостью отсчёта p + 1/2rv2 + rgz = const. (g — ускорение свободного падения). Это уравнение является основным в гидравлике.
Анализ уравнений движения вязкой жидкости показал, что для геометрически и механически подобных течений (см. Подобия теория) величина rvl/m= Re должна быть постоянной (l — характерный для задачи линейный размер, например радиус обтекаемого тела или сечения трубы и т.п., r, v и m — соответственно плотность, скорость, коэффициент вязкости жидкости). Эта величина называется Рейнольдса числом и определяет режим движения вязкой жидкости: при малых значениях Re (для трубопроводов при Re = vcpd/n lb 2300, где d — диаметр трубопровода, n = m/r) имеет место слоистое, или ламинарное течение, при больших значениях Re струйки размываются и в жидкости происходит хаотическое перемешивание отдельных масс; это т. н. турбулентное течение.
Решение основных уравнений Г. вязкой жидкости оказалось возможным найти только для крайних случаев — для Re очень малых, что соответствует (при обычных размерах) большой вязкости, и для Re очень больших, что соответствует течениям жидкостей с малой вязкостью. В ряде технических вопросов особо важны задачи о течениях жидкостей с малой вязкостью (вода, воздух). В этом случае уравнения Г. можно значительно упростить, выделив слой жидкости, непосредственно прилегающий к поверхности обтекаемого тела, в котором вязкостью пренебречь нельзя; этот слой называется пограничным слоем. За пределами пограничного слоя жидкость может рассматриваться как идеальная. Для характеристики движений жидкости, в которых основную роль играет сила тяжести (например, волны, образующиеся на поверхности воды при ветре, прохождении корабля и т.д.), в Г. вводится др. безразмерная величина v2/gl = Fr, называемая числом Фруда.
Практические применения Г. чрезвычайно разнообразны. Г. пользуются при проектировании кораблей и самолётов, расчёте трубопроводов, насосов, гидротурбин и водосливных плотин, при исследовании морских течений и речных наносов, изучении фильтрации грунтовых вод и нефти в подземных месторождениях и т.п. Об истории Г. см. в ст. Гидроаэромеханика.
Лит.: Прандтль Л.. Гидроаэромеханика, пер. с нем., М., 1949.
Гидродинамическая передача
Гидродинами'ческая переда'ча, механизм для бесступенчатого изменения передаваемого от двигателя крутящего момента или частоты вращения вала машины-орудия; рабочий процесс Г. п. осуществляется за счёт работы лопастных насоса и турбины. Г. п. была предложена в начале 20 в. в виде соосно расположенных центробежного
Г. п. только с двумя колёсами — насосным и турбинным (рис.), имеет равные на обоих валах крутящие моменты и называют гидродинамической муфтой (гидромуфтой). В номинальном режиме частота вращения турбинного вала гидромуфты на 1,5—4% меньше частоты вращения вала насоса; кпд гидромуфты составляет 95—98%.
Гидротрансформаторы имеют три лопаточных колеса (насосное, направляющего аппарата и турбинное) или более. Они бывают с одно- или многоступенчатой турбиной. В последнем случае удаётся расширить область изменения частоты вращения вторичного вала и получить большее увеличение крутящего момента на турбинном колесе по отношению к моменту на валу насоса в режиме страгивания, т. е. когда турбинный вал полностью остановлен (у трёхступенчатых турбин до 12:1). Г. п. допускают регулирование крутящего момента за счёт изменения заполнения их рабочей полости. Этот способ широко применяется для регулирования гидромуфт. Чтобы уменьшить падение кпд в гидротрансформаторах, регулирование ведут поворотом лопастей рабочих колёс. В некоторых конструкциях гидротрансформаторов предусматривается отключение направляющего аппарата, что обращает механизм в гидромуфту — это т. н. комплексная передача. Г. п. строятся с передаточным отношением от 0,6 до 6 и кпд 0,86—0,92. Раздельная Г. п., т. е. отдельно расположенные насос и турбина, соединённые трубами, позволяет произвольно размещать турбину относительно двигателя, дробить мощность двигателя между несколькими потребителями и, наоборот, суммировать мощность нескольких двигателей для привода одной машины. Несмотря на то, что кпд раздельных Г. п. составляет 65—70%, они находят всё большее применение в тех случаях, когда приводимая машина должна размещаться в месте, где невозможно или затруднено обслуживание: приводы буровых установок, насосы топливных систем летательных аппаратов, насосы химических установок и др.
Наибольшее применение Г. п., как автоматически действующие бесступенчатые передачи, нашли в трансмиссиях автомобилей, на тепловозах, в судовых силовых установках, приводах питательных насосов и дымососов ТЭЦ. Мощность приводимых через гидромуфты насосов ТЭЦ доходит до 25000 квт.
Лит.: Гавриленко Б. А., Минин В. А., Рождественский С. Н., Гидравлический привод, М., 1968.
В. А. Минин.
Гидродинамические передачи: а — гидротрансформатор; б — гидромуфта; 1 — рабочее колесо насоса, установленное на ведущем валу; 2 — рабочее колесо гидротурбины, установленное на ведомом валу; 3 — неподвижный направляющий аппарат — реактор. Стрелками показано направление потока рабочей жидкости.
Гидродинамическое сопротивление
Гидродинами'ческое сопротивле'ние, сопротивление движению тела со стороны обтекающей его жидкости или сопротивление движению жидкости, вызванное влиянием стенок труб, каналов и т.д. При обтекании неподвижного. тела потоком жидкости (газа) или, наоборот, когда тело движется в неподвижной среде, Г. с. представляет собой проекцию главного вектора всех действующих на тело сил на направление движения. Г. с.
где r — плотность среды, v — скорость, S — характерная для данного тела площадь. Безразмерный коэффициент Г. с. сх зависит от формы тела, его положения относительно направления движения и чисел подобия (см. Подобия критерии). Силу, с которой жидкость действует на каждый элемент поверхности движущегося тела, можно разложить на нормальную и касательную составляющие, т. е. на силу давления и силу трения. Проекция результирующей всех сил давления на направление движения даёт Г. с. давления, а проекция результирующей всех сил трения на направление движения — Г. с. трения. Тела, у которых сопротивление от сил давления мало по сравнению с сопротивлением от сил трения, считаются хорошо обтекаемыми. Г. с. плохо обтекаемых тел определяется почти полностью сопротивлением давления. При движении тел вблизи поверхности воды образуются волны, в результате чего возникает волновое сопротивление.