Большая Советская Энциклопедия (КИ)
Шрифт:
Лит.: Тахтаджян А. Л., Высшие растения, т. 1, М. — Л., 1956.
Кипение
Кипе'ние, переход жидкости в пар, происходящий с образованием в объеме жидкости пузырьков пара или паровых полостей. Пузырьки растут вследствие испарения в них жидкости, всплывают, и содержащийся в пузырьках насыщенный пар переходит в паровую фазу над жидкостью. К. начинается, когда при нагреве жидкости давление насыщенного пара над её поверхностью становится равным внешнему давлению. Температура, при которой происходит К. жидкости, находящейся под постоянным давлением, называется температурой кипения (Ткип ). Строго говоря, Ткип соответствует температуре насыщенного пара (температуре насыщения) над плоской поверхностью кипящей жидкости, так как сама жидкость всегда несколько перегрета относительно Ткип . При стационарном К. температура кипящей жидкости не меняется. С ростом давления Ткип
Для поддержания К. к жидкости необходимо подводить теплоту, которая расходуется на парообразование и работу пара против внешнего давления при увеличении объёма паровой фазы (см. Испарение ). Таким образом, кипение неразрывно связано с теплообменом, вследствие которого от поверхности нагрева к жидкости передаётся теплота. Теплообмен при К. — один из видов конвективного теплообмена .
В кипящей жидкости устанавливается определённое распределение температуры (рис. 1 ): у поверхностей нагрева (стенок сосуда, труб и т.п.) жидкость заметно перегрета (Т > Ткип ). Величина перегрева зависит от ряда физико-химических свойств как самой жидкости, так и граничных твёрдых поверхностей. Тщательно очищенные жидкости, лишённые растворённых газов (воздуха), можно при соблюдении особых мер предосторожности перегреть на десятки градусов без закипания. Когда такая перегретая жидкость в конце концов вскипает, то процесс К. протекает весьма бурно, напоминая взрыв. Вскипание сопровождается расплескиванием жидкости, гидравлическими ударами, иногда даже разрушением сосудов. Теплота перегрева расходуется на парообразование, поэтому жидкость быстро охлаждается до температуры насыщенного пара, с которым она находится в равновесии. Возможность значительного перегрева чистой жидкости без К. объясняется затрудненностью возникновения начальных маленьких пузырьков (зародышей), их образованию мешает значительное взаимное притяжение молекул жидкости. Иначе обстоит дело, когда жидкость содержит растворенные газы и различные мельчайшие взвешенные частицы. В этом случае уже незначительный перегрев (на десятые доли градуса) вызывает устойчивое и спокойное К., так как начальными зародышами паровой фазы служат газовые пузырьки и твердые частицы. Основные центры парообразования находятся в точках нагреваемой поверхности, где имеются мельчайшие поры с адсорбированным газом, а также различные неоднородности, включения и налеты, снижающие молекулярное сцепление жидкости с поверхностью.
Образовавшийся пузырёк растет только в том случае, если давление пара в нём несколько превышает сумму внешнего давления, давления вышележащего слоя жидкости и капиллярного давления , обусловленного кривизной поверхности пузырька. Для создания в пузырьке необходимого давления пар и окружающая его жидкость, находящаяся с паром в тепловом равновесии, должны иметь температуру, превышающую Ткип . В повседневной практике (при кипячении воды в чайнике и т.п.) наблюдается именно этот вид К., его называют пузырчатым. Пузырчатое К. происходит при небольшом превышении температуры Т поверхности нагрева над температурой К., т. е. при незначительном температурном напоре DТ=Т— Ткип . С увеличением температуры поверхности нагрева число центров парообразования резко возрастает, все большее количество оторвавшихся пузырьков всплывает в жидкости, вызывая ее интенсивное перемешивание. Это приводит к значительному росту теплового потока от поверхности нагрева к кипящей жидкости (росту коэффициента теплоотдачи a=q/DT, где q — плотность теплового потока на поверхности нагрева,). Соответственно возрастает и количество образующегося пара.
При достижении максимального (критического) значения теплового потока (qmakc ) начинается второй, переходный режим К. При этом режиме бо'льшая доля поверхности нагрева покрывается сухими пятнами из-за прогрессирующего слияния пузырьков пара. Теплоотдача и скорость парообразования резко снижаются, т.к. пар обладает меньшей теплопроводностью, чем жидкость, поэтому q и a резко снижаются. Наступает кризис К. Когда вся поверхность нагрева обволакивается тонкой паровой пленкой, возникает третий, пленочный, режим К. При нем теплота от раскаленной поверхности передается к жидкости через паровую пленку путем теплопроводности и излучения. Характер изменения q с переходом от одного режима К. к другому показан на. В том случае, когда жидкость не смачивает стенку (например, ртуть, легированную сталь), К. происходит только в плёночном режиме. Все три режима К. можно наблюдать в обратном порядке, когда массивное металлическое тело погружают в воду для его закалки : вода закипает, охлаждение тела идет сначала медленно (пленочное К.), затем скорость охлаждения начинает быстро увеличиваться (переходное К.) и достигает наибольших значений в конечной стадии охлаждения (пузырчатое К.). Теплоотвод в режиме пузырчатого К. является одним из наиболее эффективных способов охлаждения; он находит применение в атомных реакторах и при охлаждении реактивных двигателей. Широко применяются процессы К. также в химической технологии,
К. возможно не только при нагревании жидкости в условиях постоянного давления. Снижением внешнего давления при постоянной температуре можно также вызвать перегрев жидкости и её вскипание (за счёт уменьшения температуры насыщения). Этим объясняется, в частности, явление кавитации — образование паровых полостей в местах пониженного давления жидкости (например, в вихревой зоне за гребным винтом теплохода). К. при пониженном давлении применяют в холодильной технике , в физическом эксперименте (см. Пузырьковая камера ) и т.д.
Лит.: Кикоин И. К. и Кикоин А. К., Молекулярная физика, М., 1963; Радченко И. В., Молекулярная физика, М., 1965; Михеев М. А., Основы теплопередачи, 3 изд., М. — Л., 1956, гл. 5.
Д. А. Лабунцов.
Рис. 2. Изменение плотности теплового потока q и коэффициента теплоотдачи ( при кипении воды под атмосферным давлением в зависимости от температурного напора DT =Т– Ткип : А — область слабого образования пузырей; Б — пузырчатое кипение; В — переходный режим кипения; Г — стабильное плёночное кипение.
Рис. 1. Распределение температуры в слое кипящей жидкости (толщиной 6 см ) при атмосферном давлении.
Киплинг Джозеф Редьярд
Ки'плинг (Kipling) Джозеф Редьярд (30.12.1865, Бомбей, — 18.1.1936, Лондон), английский писатель. Сын колониального чиновника-интеллигента. В 1882—89 жил в Индии, сотрудничал в газетах, опубликовал сборник стихов «Департаментские песни» (1886) и сб. новелл «Простые рассказы с гор» (1888). Герой первого романа К. «Свет погас» (1890, рус. пер. 1903), талантливый художник, потерпев крушение в личной жизни, находит смерть на поле боя в рядах колониальных войск. В романе «Ким» (1901) воспевается шпионская деятельность мальчика англо-индийца на благо Британской империи. Своей славой К. обязан прежде всего поэтическим сборникам «Песни казармы» (1892), «Семь морей» (1896), «Пять наций» (1903) и др., в которых рисует будничную жизнь солдат, мелких чиновников, их преданность долгу перед империей. Критикуя английскую колониальную администрацию («Пэджет, член парламента»), упрекая английское правительство и военное командование в невнимании к нижним чинам («Томми»), К. создает впечатление беспристрастной объективности своих воззрений. Однако его творчество крайне тенденциозно в утверждении «цивилизаторской» миссии англо-саксонской расы среди «отсталых» народов Востока («Бремя белого человека», 1899). Позднее творчество К. в художественном отношении малозначительно.
Лучшие стихи К. близки к английским народным песням и балладам, отличаются динамичными ритмами, насыщены грубоватым юмором, образным просторечием. Большой популярностью пользуются произведения К. для детей, особенно рассказы о жизни человеческого детеныша Маугли среди зверей («Книга джунглей», 1894; «Вторая книга джунглей», 1895). Нобелевская премия (1907).
Соч.: The writings, v. 1—36, N. Y., 1897—1937; Recessional and other poems, L., 1899; Puck of Pook's hill, L., 1906; Something of myself, L., 1937; в рус. пер. — Собр. соч., [т. 1-20], П., 1916; Избр. стихи, Л., 1936; Рассказы, М. — Л., 1936; Сказки, пер. К. Чуковского, стихи в пер. С. Маршака, М., 1956; Маугли, М., 1956; Лиспет. Рассказы, Л., 1968.
Лит.: История английской литературы, т. 3, М., 1958; Kipling's mind and art. Selected critical essays, ed. by A. Rutherford, Stanford (Calif.), 1964; Henn Т. R., Kipling, Edin. — L., [1967]; Kipling. The critical heritage, L., [1971]; Livingston F. V., Bibliography of the works of R. Kipling, N. Y., 1968.
Н. Я. Дьяконова.
Д. Р. Киплинг.
«Маугли» (Москва, 1935). Илл. В. Ватагина.
Кипоренко-Даманский Юрий Степанович
Кипоре'нко-Дама'нский Юрий Степанович [12(24).3.1888, Харьков, — 6.8.1955, Киев], украинский советский певец (драматический тенор), народный артист УССР (1936). Член КПСС с 1946. Пению учился в Москве (1911—16), совершенствовался в Италии (1927, Милан). В 1907—13 выступал в музыкально-драматических труппах. В 1913—38 пел в оперных театрах Москвы, Киева, Тбилиси и др. С 1938 солист Украинского театра оперы и балета (Киев). Партии: Собинин («Иван Сусанин» Глинки; Государственная премия СССР, 1949), Герман («Пиковая дама» Чайковского), Садко («Садко» Римского-Корсакова), Андрий («Тарас Бульба» Лысенко), Хозе («Кармен» Визе), Радамес, Отелло («Аида», «Отелло» Верди) и др. Выступал в концертах. С 1948 преподавал в Киевской консерватории (с 1952 — доцент). Награжден 2 орденами.