Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (КВ)
Шрифт:

Нельзя не отметить возрождения интереса к теориям, в которых законы динамики вновь приобретают традиционный вид уравнений, описывающих детальную пространственно-временную картину процессов, Толчком к этому послужили важные исследования в области систематики элементарных частиц и установление новых свойств симметрии (см. Элементарные частицы). За обнаруженными здесь закономерностями естественно искать динамические законы. Очень интересные, хотя и предварительные результаты попыток согласовать динамику полей со свойствами симметрии элементарных частиц, по-видимому, приводят к необходимости рассмотрения нелинейных (т. е. испытывающих самовоздействие) полей (см. Нелинейная квантовая теория поля). В известном смысле это направление близко к единой К. т. п. (см. Единая теория поля), в которой делаются попытки рассматривать материю в целом как некое единое фундаментальное поле (или несколько основных типов фундаментальных полей), а отдельные частицы — как различные проявления (состояния) этого поля.

Было бы преждевременно оценивать

все имеющиеся попытки решения проблем, возникающих в К. т. п. Однако сам факт многочисленности таких попыток свидетельствует о серьёзности этих проблем и об усилиях, которые предпринимаются для решения основного вопроса физики — вопроса о строении материи.

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля, М., 1967 (Теоретическая физика, т. 2); Швебер С., Введение в релятивистскую квантовую теорию поля, [пер. с англ.], М., 1963; Боголюбов Н. Н., Ширков Д. В., Введение в теорию квантованных полей, М., 1957; Салам А., Фундаментальная теория материи (результаты и методы), «Успехи Физических наук», 1969, т. 99, в. 4, с. 571—611; Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 3 изд., М., 1969; Займан Дж., Современная квантовая теория, [пер. с англ.], М., 1971; Боголюбов Н. Н., Тодоров И. Т., Логунов А. А., Основы аксиоматического подхода в квантовой теории поля, М., 1969; Иден Р., Соударения элементарных частиц при высоких энергиях, [пер. с англ.], М., 1970.

В. И. Григорьев.

Рис. 10 к ст. Квантовая теория поля.

Рис. 12 к ст. Квантовая теория поля.

Рис. 9 к ст. Квантовая теория поля.

Рис. 11 к ст. Квантовая теория поля.

Рис. 8 к ст. Квантовая теория поля.

Рис. 6 к ст. Квантовая теория поля.

Рис. 4 (слева) и рис. 5 (справа) к ст. Квантовая теория поля.

Рис. 7 к ст. Квантовая теория поля.

Рис. 3 к ст. Квантовая теория поля.

Рис. 2 к ст. Квантовая теория поля.

Рис. 1 к ст. Квантовая теория поля.

Квантовая химия

Ква'нтовая хи'мия, область теоретической химии, в которой вопросы строения и реакционной способности химических соединений, химические связи рассматриваются на основе представлений и методов квантовой механики. Квантовая механика в принципе позволяет рассчитывать свойства атомно-молекулярных систем, исходя только из Шрёдингера уровнения, Паули принципа и универсальных физических постоянных. Различные физические характеристики молекулы (энергия, электрические и магнитные дипольные моменты и др.) могут быть получены как собственные значения операторов соответствующих величин, если известен точный вид волновой функции. Однако для систем, содержащих 2 и более электронов, пока не удалось получить точного аналитического решения уравнения Шрёдингера. Если же использовать функции с очень большим числом переменных, то можно получить приближённое решение, по числовой точности аппроксимирующее сколь угодно точно идеальное решение, Тем не менее, несмотря на использование современных ЭВМ с быстродействием порядка сотен тысяч и даже миллионов операций в секунду, подобные «прямые» решения уравнения Шрёдингера пока что осуществлены только для систем с несколькими электронами, например молекул H2 и LiH. Поскольку химиков интересуют системы с десятками и сотнями электронов, приходится идти на упрощения. Поэтому для описания таких систем были выдвинуты различные приближённые квантовохимические теории, более или менее удовлетворительные в зависимости от характера рассматриваемых задач: теория валентных связей, заложенная в 1927 В. Гейтлером и Ф. Лондоном в Германии, а в начале 30-х гг. развитая Дж. Слейтером и Л. Полингом в США; кристаллического поля теория, предложенная немецким учёным Х. Бете в 1929 и в последующие годы разрабатывавшаяся американским учёным Ван Флеком (своё применение в химии она получила в 1950-е гг. как теория поля лигандов благодаря исследованиям английского учёного Л. Оргела и датских учёных К. Йоргенсена и К. Бальхаузена). В конце 1920-х гг. появилась теория молекулярных орбиталей (МО), разработанная Дж. Леннардом-Джонсом (Великобритания), Р. Малликеном (США), Ф. Хундом (Германия) и развивавшаяся затем многими др. исследователями (см. Молекулярных орбиталей метод). Долгое время эти приближённые теории сосуществовали и даже дополняли друг друга. Однако теперь, когда достигнуты огромные успехи в синтезе молекул и определении их структуры, а вычислительная техника получила широкое развитие, симпатии исследователей склонились в сторону теории МО. Это объясняется тем что только теория МО выработала универсальный язык, в принципе пригодный для описания любых молекул, строение которых отличается очень большим разнообразием и сложностью. Теория МО включает наиболее общие физические представления об электронном строении молекул и (что не менее важно) использует математический аппарат, наиболее пригодный для проведения количественных расчётов на ЭВМ.

Теория МО исходит из того, что каждый электрон молекулы находится в поле всех ее атомных ядер и остальных электронов. Теория атомных орбиталей (АО), описывающая электронное строение атомов, включается в теорию МО как частный случай, когда в системе имеется только одно атомное ядро. Далее, теория МО рассматривает все химические связи как многоцентровые (по числу атомных ядер в молекуле) и тем самым полностью делокализованные. С этой точки зрения всякого рода преимущественная локализация электронной плотности около определённой части атомных ядер есть приближение, обоснованность которого должна быть выяснена в каждом конкретном случае. Представления В. Косселя о возникновении в химических соединениях обособленных ионов (изоэлектронных атомам благородных газов) или воззрения Дж. Льюиса (США) об образовании двухцентровых двухэлектронных химических связей (выражаемых символикой валентного штриха) естественно включаются в теорию МО как некоторые частные случаи.

В основе теории МО лежит одноэлектронное приближение, при котором каждый электрон считается квазинезависимой частицей и описывается своей волновой функцией. Обычно вводится и др. приближение — одноэлектронные МО получаются как линейные комбинации АО (приближение ЛКАО — МО).

Если принять указанные приближения, то, используя только универсальные физические постоянные и не вводя никаких экспериментальных данных (разве только равновесные межъядерные расстояния, причём в последнее время всё чаще обходятся и без них), можно проводить чисто теоретические расчёты (расчёты ab initio, лат. «от начала») по схеме метода самосогласованного поля (ССП; метода Хартри — Фока). Такие расчёты ССП — ЛКАО — МО сейчас стали возможны уже для систем, содержащих несколько десятков электронов. Здесь основные трудности заключаются в том, что приходится вычислять громадное количество интегралов. Хотя подобные расчёты являются громоздкими и дорогостоящими, получающиеся результаты не всегда удовлетворительны, во всяком случае, с количественной стороны. Это объясняется тем, что, несмотря на различные усовершенствования схемы ССП (например, введение конфигурационного взаимодействия и др. способов учёта корреляции электронов), исследователи в конечном счёте ограничены возможностями одноэлектронного приближения ЛКАО — МО.

В связи с этим большое развитие получили полуэмпирические квантовохимические расчёты. Эти расчёты также восходят к уравнению Шрёдингера, но вместо того чтобы вычислять огромное количество (миллионы) интегралов, большую часть из них опускают (руководствуясь порядком их малости), а остальные упрощают. Потерю точности компенсируют соответствующей калибровкой параметров, которые берутся из эксперимента. Полуэмпирические расчёты пользуются большой популярностью, ибо оптимальным образом сочетают в себе простоту и точность в решении различных проблем.

Описанные выше расчёты нельзя непосредственно сравнивать с чисто теоретическими (неэмпирическими) расчётами, так как у них разные возможности, а отсюда и разные задачи. Ввиду специфики используемых параметров при полуэмпирическом подходе нельзя надеяться получить волновую функцию, удовлетворительно описывающую различные (а тем более все) одноэлектронные свойства. В этом состоит коренное отличие полуэмпирических расчётов от расчётов неэмпирических, которые могут, хотя бы в принципе, привести к универсальной волновой функции. Поэтому сила и привлекательность полуэмпирических расчётов заключаются не в получении количественной информации как таковой, а в возможности интерпретации получаемых результатов в терминах физико-химических концепций. Только такая интерпретация и приводит к действительному пониманию, так как без неё на основании расчёта можно лишь констатировать те или иные количественные характеристики явлений (которые надёжнее определить на опыте). Именно в этой специфической особенности полуэмпирических расчётов и заключается их непреходящая ценность, позволяющая им выдерживать конкуренцию с полными неэмпирическими расчётами, которые по мере развития вычислительной техники становятся всё более легко осуществимыми.

Что касается точности полуэмпирических квантовохимических расчётов, то она (как и при любом полуэмпирическом подходе) зависит скорее от умелой калибровки параметров, нежели от теоретической обоснованности расчётной схемы. Так, если выбирать параметры из оптических спектров каких-то молекул, а затем рассчитывать оптические спектры родственных соединений, то нетрудно получить великолепное согласие с экспериментом, но такой подход не имеет общей ценности. Поэтому основная проблема в полуэмпирических расчётах заключается не в том, чтобы вообще определить параметры, а в том, чтобы одну группу параметров (например, полученных из оптических спектров) суметь использовать для расчётов др. характеристик молекулы (например, термодинамических). Только тогда появляется уверенность, что работа ведётся с физически осмысленными величинами, имеющими некое общее значение и полезными для концепционного мышления.

Поделиться:
Популярные книги

Внебрачный сын Миллиардера

Громова Арина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Внебрачный сын Миллиардера

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Калибр Личности 1

Голд Джон
1. Калибр Личности
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Калибр Личности 1

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Лучший из худших

Дашко Дмитрий
1. Лучший из худших
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Лучший из худших

Ротмистр Гордеев 2

Дашко Дмитрий
2. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 2

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Темный Патриарх Светлого Рода 7

Лисицин Евгений
7. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 7