Большая Советская Энциклопедия (НА)
Шрифт:
При некоторых общих предположениях можно показать, что если количество наблюдений n достаточно велико, то распределение оценки
меньше
с
[напр., I (1,96) = 0,950; I (2,58) = 0,990; I (3,00) = 0,997].
Если веса измерений pi заданы, а множитель k до наблюдений остаётся неопределённым, то этот множитель и дисперсия оценки
и
(обе оценки лишены систематических ошибок).
В том практически важном случае, когда ошибки di подчиняются нормальному распределению, можно найти точное значение вероятности, с которой абсолютная погрешность приближённого равенства
окажется меньше ts (t — произвольное положительное число). Эту вероятность, как функцию от t , называют функцией распределения Стьюдента с n– 1 степенями свободы и вычисляют по формуле
где постоянная Cn– 1 выбрана таким образом, чтобы выполнялось условие: In– 1 (yen) = 1. При больших n формулу (2) можно заменить формулой (1). Однако применение формулы (1) при небольших n привело бы к грубым ошибкам. Так, например, согласно (1), значению I = 0,99 соответствует t = 2,58; истинные значения t , определяемые при малых n как решения соответствующих уравнений ln– 1 (t ) = 0,99, приведены в таблице:
n | 2 | 3 | 4 | 5 | 10 | 20 | 30 |
t | 63,66 | 9,92 | 5,84 | 4,60 | 3,25 | 2,86 | 2,76 |
Пример. Для определения массы некоторого тела произведено 10 независимых равноточных взвешиваний, давших результаты Yi (в г ):
Yi | 18,41 | 18,42 | 18,43 | 18,44 | 18,45 | 18,46 |
ni | 1 | 3 | 3 | 1 | 1 | 1 |
(здесь ni —
Задавая, например, I9 = 0,95, по таблицам распределения Стьюдента с девятью степенями свободы можно найти, что t = 2,262, и поэтому в качестве предельной абсолютной погрешности приближённого равенства m » 18,431 следует принять величину
Т. о. 18,420 < m < 18,442.
Случай нескольких неизвестных (линейные связи). Пусть n результатов измерений Y1 , Y2 ,..., Yn связаны с m неизвестными величинами x1 , x2 ,..., хm (m < n ) независимыми линейными отношениями
где aij — известные коэффициенты, а di — независимые случайные ошибки измерений. Требуется оценить неизвестные величины xj (эту задачу можно рассматривать как обобщение предыдущей, в которой m = x1 и m = ai1 = 1; i = 1,2,..., n ).
Так как Е di = 0, то средние значения результатов измерений yi , = Eyi . связаны с неизвестными величинами x1 , x2 ,..., хm линейными уравнениями (линейные связи):
Следовательно, искомые величины xj представляют собой решение системы (4), уравнения которой предполагаются совместными. Точные значения измеряемых величин yi и случайные ошибки di обычно неизвестны, поэтому вместо систем (3) и (4) принято записывать так называемые условные уравнения
Согласно Н. к. м., качестве оценок для неизвестных xj применяют такие величины Xj , для которых сумма квадратов отклонений
будет наименьшей (как и в предыдущем случае, pi — вес измерения Yi , — величина, обратно пропорциональная дисперсии случайной ошибки di ). Условные уравнения, как правило, несовместны, т. е. при любых значениях Xj разности