Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (НЕ)
Шрифт:

ki = ji (f1 , f2 ,..., fr , g1 , g2 ,..., gr ), (7)

i = 1, 2,..., r,

где ji непрерывная функция всех переменных. Если ещё предположить, что функции j, трижды непрерывно дифференцируемы, то мы придём к понятию группы Ли. Если считать, что координаты единицы все

равны нулю, т. е. если принять единицу за начало координат, то, разлагая в ряд Тейлора правую часть соотношения (7), получим

Числа

называются структурными константами группы Ли, и к изучению их полностью сводится изучение группы Ли.

Лит.: Понтрягин Л. С., Непрерывные группы, 3 изд., М., 1973 (имеется библ.).

Л. С. Понтрягин.

Непрерывная дробь

Непреры'вная дробь, цепная дробь, один из важнейших способов представления чисел и функций. Н. д. есть выражение вида

где a — любое целое число, a1 , a2 ,..., an ,... — натуральные числа, называемые неполными частными, или элементами, данной Н. д. К Н. д., изображающей некоторое число a, можно прийти, записывая это число в виде

где a — целое число и 0 < 1/a1 < 1, затем, записывая в таком же виде a1 и т. д. Число элементов Н. д. может быть конечным или бесконечным; в зависимости от этого Н. д. называют конечной или бесконечной. Н. д. (1) часто символически обозначают так:

[а ; a1 , a2,..., an ,... ] (бесконечная Н. д.) (2)

или

[а ; а1 , a2,..., an ] (конечная Н. д.). (3)

Конечная Н. д. всегда представляет собой рациональное число; обратно, каждое рациональное число может быть представлено в виде конечной Н. д. (3); такое представление единственно, если потребовать, чтобы an &sup1; 1. Н. д. [а ; a1 , a2 ,..., ak ] (k lb n ), записанную в виде несократимой дроби pk /qk , называют подходящей дробью порядка k данной Н. д. (2). Числители и знаменатели подходящих дробей связаны рекуррентными формулами:

pk+1 = ak+1pk + pk– 1, qk+1 = ak+1qk + qk– 1,

которые

служат основанием всей теории Н. д. Из этих формул непосредственно вытекает важное соотношение

pk qk– 1qk pk-1 = ± 1.

Для каждой бесконечной Н. д. существует предел

называемый значением данной Н. д. Каждое иррациональное число является значением единственной бесконечной Н. д., получаемой разложением a указанным выше образом, например

(е — 1)/2 = [0, 1,6, 10,14, 18,...];

квадратичные иррациональности разлагаются в периодические Н. д.

Основное значение Н. д. для приложений заключается в том, что подходящие дроби являются наилучшими приближениями числа a, то есть, что для любой другой дроби m /n, знаменатель которой не более gk имеет место неравенство |n a — m | > |gk a — pk l; при этом |qk . — pk | < 1/qk+1. Нечётные подходящие дроби больше a, а чётные — меньше. При возрастании k нечётные подходящие дроби убывают, а чётные возрастают.

Н. д. используются для приближения иррациональных чисел рациональными. Например, известные приближения 22 /7 , 355 /113 для числа p (отношения длины окружности к диаметру) суть подходящие дроби для разложения p в Н. д. Следует отметить, что первое доказательство иррациональности чисел е и p было дано в 1766 немецким математиком И. Ламбертом с помощью Н. д. Французский математик Ж. Лиувилль доказал: для любого алгебраического числа a степени n можно найти такую постоянную l, что для любой дроби x /y выполняется неравенство |a — x /y | > l/уn . С помощью Н. д. можно построить числа a такие, что разность |a — pk /qk | делается меньше a/gk , какую бы постоянную l мы ни взяли. Так, используя Н. д., можно строить трансцендентные числа. Недостатком Н. д. является чрезвычайная трудность арифметических действий над ними, равносильная практической невозможности этих действий; например, зная элементы двух дробей, мы не можем сколько-нибудь просто получить элементы их суммы или произведения.

Н. д. встречаются уже в 16 в. у Р. Бомбелли . В 17 в. Н. д. изучал Дж. Валлис ; ряд важных свойств Н. д. открыл Х. Гюйгенс , занимавшийся ими в связи с теорией зубчатых колёс. Многое сделал для теории Н. д. Л. Эйлер в 18 в.

В 19 в. П. Л. Чебышев , А. А. Марков и др. применили Н. д., элементами которых являются многочлены, к изучению ортогональных многочленов .

Лит.: Чебышев П. Л., Полное собрание сочинений, 2 изд., т. 1, М. — Л., 1946; Хинчин А. Я., Цепные дроби, 2 изд., М. — Л., 1949; Эйлер Л., Введение в анализ бесконечно малых, пер. с лат., т. 1, М. — Л., 1936; Стилтьес Т. И., Исследования о непрерывных дробях, пер. с франц., Хар. — К., 1936; Perron О., Die Lehre von den Kettenbr"uchen, 2 Aufl., Lpz. — B., 1929; Wall Н. S., Analytic theory of continued fractions, Toronto — N. Y. — L., 1948.

Поделиться:
Популярные книги

На границе тучи ходят хмуро...

Кулаков Алексей Иванович
1. Александр Агренев
Фантастика:
альтернативная история
9.28
рейтинг книги
На границе тучи ходят хмуро...

Энфис. Книга 1

Кронос Александр
1. Эрра
Фантастика:
боевая фантастика
рпг
5.70
рейтинг книги
Энфис. Книга 1

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Адепт: Обучение. Каникулы [СИ]

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.15
рейтинг книги
Адепт: Обучение. Каникулы [СИ]

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Безымянный раб

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
фэнтези
9.31
рейтинг книги
Безымянный раб

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Первый пользователь. Книга 3

Сластин Артем
3. Первый пользователь
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Первый пользователь. Книга 3