Большая Советская Энциклопедия (НЕ)
Шрифт:
Нелинейная акустика
Нелине'йная аку'стика, область акустики , изучающая явления, для описания которых обычные приближения линейной теории звука недостаточны и необходим учёт нелинейных членов уравнений гидродинамики и уравнения состояния. Обычно такие явления (так называемые нелинейные эффекты) становятся существенными лишь при достаточно больших амплитудах звуковых волн; в этом смысле предмет изучения Н. а. — звуковые поля большой интенсивности, например распространение мощных ультразвуковых и звуковых (ударных) волн, генерация интенсивных паразитных колебаний при работе ракетных двигателей и т.п.
Распространение интенсивных звуковых волн (называемых также волнами конечной амплитуды) обладает рядом существенных особенностей. Одна из них — изменение формы волны при её распространении — обусловлена разницей в скоростях перемещения различных
В отличие от волн малой амплитуды, интенсивные звуковые волны не подчиняются суперпозиции принципу . К числу нелинейных эффектов относятся также давление звука и акустического течения (см. Акустический ветер ), существенные для некоторых технологических процессов.
Лит.: Зарембо Л. К. и Красильников В. А., Введение в нелинейную акустику, М., 1966; Физика и техника мощного ультразвука, под ред. Л. Д. Розенберга, [кн. 2], М., 1968.
Фотография формы первоначально синусоидальной волны на расстоянии в 100 длин волн от излучателя.
Нелинейная квантовая теория поля
Нелинейная ква'нтовая тео'рия по'ля, общее название теорий, в которых используются нелинейные уравнения для операторов, описывающих квантованные поля. Физически это соответствует учёту самовоздействия поля. В одних теориях самовоздействие поля постулируется как нечто изначальное (такие теории и называются обычно нелинейными), в других — оно «индуцируется» некоторым промежуточным взаимодействием. В квантовой электродинамике, например, нелинейность, «индуцированная» взаимодействием между фотонами посредством виртуальных электронно-позитронных пар, должна приводить к наблюдаемым (но ещё не обнаруженным ввиду их малости) эффектам рассеяния света на свете и на поле заряженных частиц (см. Квантовая теория поля ).
В Н. к. т. п. можно заметить две тенденции. Во-первых, исследуется, к каким результатам приводит учёт нелинейности для конкретных физических полей. Высказываются предположения, что, подобно тому как нелинейное обобщение классической электродинамики, предложенное М. Борном и Л. Инфельдом , разрешило проблему так называемой кулоновской расходимости (энергия кулоновского поля точечной частицы в обычной электродинамике оказывается бесконечной), учёт нелинейности, «индуцированной», в частности, гравитацией, может устранить расходимости в квантовой теории поля.
Вторая тенденция, получившая известность в основном после работ групп В. Гейзенберга (ФРГ) и Д. Д. Иваненко (СССР), шире: делаются попытки искать нелинейные уравнения не для конкретных полей, а для материи в целом («праматерии»), а конкретные физические поля рассматривать как обусловленные самовоздействием «праматерии» различные возможные её состояния.
Указанные тенденции пока только намечены. Н. к. т. п. ещё не получила достаточного развития, хотя важность учёта нелинейностей в физике элементарных частиц становится всё более очевидной.
Лит.: Нелинейная квантовая теория поля, Сб. статей, перевод, под ред. Д. Д. Иваненко, М., 1959 (Проблемы физики); Нелокальные, нелинейные и неренормируемые теории поля, Препринт ОИЯИ 2-5400, Дубна, 1970.
В. И. Григорьев.
Нелинейная оптика
Нелине'йная
Историческая справка. В «долазерной» оптике считалось твёрдо установленным, что основными характеристиками световой волны, определяющими характер её взаимодействия с веществом, являются частота или непосредственно связанная с нею длина волны l и поляризация волны. Для подавляющего большинства оптических эффектов величина напряжённости электрического светового поля Е (или плотность потока излучения I= cnE2 /8p, где с — скорость света, n — показатель преломления) фактически не влияла на характер явления. Показатель преломления n, коэффициента поглощения, эффективное сечение рассеяния света фигурировали в справочниках без указания интенсивности света, для которой они были измерены, так как зависимость указанных величин от интенсивности не наблюдалась. Можно указать лишь несколько работ, в которых были сделаны попытки исследовать влияние интенсивности света на оптические явления. В 1923 С. И. Вавилов и В. Л. Лёвшин обнаружили уменьшение поглощения света урановым стеклом с ростом интенсивности света и объяснили это тем, что в сильном электромагнитном поле большая часть атомов (или молекул) находится в возбуждённом состоянии и уже не может поглощать свет. Считая, что это лишь один из множества возможных нелинейных эффектов в оптике, Вавилов впервые ввёл термин «Н. о.». Возможность наблюдения ряда нелинейных оптических эффектов с помощью фотоэлектрических умножителей в 50-х гг. теоретически рассмотрел Г. С. Горелик (СССР); один из них — смещение оптического дублета с выделением разностной частоты, лежащей в диапазоне СВЧ (гетеродинирование света), наблюдали в 1955 А. Форрестер, Р. Гудмундсен и П. Джонсон (США).
Широкие возможности изучения нелинейных оптических явлений открылись после создания лазеров. В 1961 П. Франкен с сотрудниками (США) открыл эффект удвоения частоты света в кристаллах — генерацию 2-й гармоники света. В 1962 наблюдалось утроение частоты — генерация 3-й оптической гармоники. В 1961—1963 в СССР и США были получены фундаментальные результаты в теории нелинейных оптических явлений, заложившие теоретические основы Н. о. В 1962—63 было открыто и объяснено явление вынужденного комбинационного рассеяния света . Это послужило толчком к изучению вынужденного рассеяния др. видов: вынужденного рассеяния Мандельштама — Бриллюэна, вынужденного релеевского рассеяния и т.п. (см. Вынужденное рассеяние света ).
В 1965 было обнаружено явление самофокусировки световых пучков. Оказалось, что мощный световой пучок, распространяясь в среде, во многих случаях не только не испытывает обычной, так называемой дифракционной расходимости, а напротив, самопроизвольно сжимается. Явление самофокусировки электромагнитных волн в общей форме было предсказано в 1962 Г. А. Аскарьяном (СССР). Оптические эксперименты были стимулированы теоретическими работами Ч. Таунса с сотрудниками (США, 1964). Большой вклад в понимание природы явления внесли работы А. М. Прохорова с сотрудниками.