Большая Советская Энциклопедия (ПР)
Шрифт:
Всякая возрастающая (убывающая) последовательность, ограниченная сверху (соответственно снизу), сходится. Например, если для заданного числа а обозначить через an приближённое значение его корня
Для того чтобы сходилась произвольная последовательность xn , необходимо и достаточно, чтобы она удовлетворяла критерию Коши: для любого числа e > 0 существует такой номер Ne, что для всех номеров m ³ Ne и n ³ Ne выполняется неравенство |xn — xm | < e.
Если последовательность xn , n = 1, 2,..., такова, что для числа e > 0 существует такой номер ne , что для всех номеров n ³ ne выполняется неравенство |xn | > e, то последовательность xn , называется бесконечно большой и пишется
Если же при этом для любого e > 0 существует такой номер ne , что xn > e (соответственно xn < -e) для всех n ³ ne , то пишется
Эти П. называются бесконечными. Например,
Частичные пределы. Верхний и нижний пределы . П. (конечный и бесконечный) какой-либо подпоследовательности называется частичным пределом последней. Из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность (теорема Больцано — Вейерштрасса), а из всякой неограниченной — бесконечно большую. В множестве всех частичных П. последовательности всегда имеется как наибольший, так и наименьший (конечный или бесконечный). Наибольший (соответственно наименьший) частичный П. последовательности xn , n = 1, 2,..., называют её верхним (соответственно нижним) пределом и обозначается
Последовательность имеет конечный или бесконечный П. тогда и только тогда, когда её верхний П. совпадает с нижним, при этом их общее значение и является её П. Конечный верхний П. последовательности можно также определить как такое число а, что при любом e > 0 существует бесконечно много членов последовательности, больших, чем а — e, и лишь не более, чем конечное число членов, больших, чем a + e.
Предел функции . Пусть функция f , принимающая действительные значения, определена в некоторой окрестности точки x , кроме, быть может, само'й точки x . Функция f имеет П. в точке x , если для любой последовательности точек xn , n = 1, 2,..., xn ¹ x , стремящейся к точке x , последовательность значений функции f (xn ) сходится к одному и тому же числу А, которое и называется пределом функции f в точке x , (или при x ® x ) при этом пишется
или
f (x ) ® A при x ® x
В силу этого определения на П. функций переносятся свойства П. суммы, произведения и частного последовательностей, а также сохранение неравенств при предельном переходе.
Определение П. функции можно сформулировать и не прибегая к понятию П. последовательности: число А называется пределом функции f в точке x , если для любого числа e > 0 существует такое число d > 0, что для всех точек х ¹ x , удовлетворяющих условию ½х — x ½ < d, x ¹ x , выполняется неравенство ½f (x ) — A½ < e.
Все основные элементарные функции: постоянные, степенная функция хa, показательная функция ax , тригонометрические функции sinx, cosx, tgx и ctgx и обратные тригонометрические функции arcsinx, arccosx, arctgx и arcctgx во всех внутренних точках своих областей определения имеют П., совпадающие с их значениями в этих точках. Но это не всегда бывает так. Функция