Большая Советская Энциклопедия (РА)
Шрифт:
А. А. Асеев.
Равновеликая проекция
Равновели'кая прое'кция, эквивалентная проекция, одна из картографических проекций.
Равновеликие и равносоставленные фигуры
Равновели'кие и равнососта'вленные фигу'ры. Равновеликие фигуры — плоские (пространственные) фигуры одинаковой площади (объёма); равносоставленные фигуры — фигуры, которые можно разрезать на одинаковое число соответственно конгруэнтных (равных) частей. Обычно понятие равносоставленности применяется только к многоугольникам и многогранникам. Равносоставленные фигуры являются равновеликими. Венгерский математик Я. Больяй (1832) и немецкий математик П. Гервин (1833) доказали, что равновеликие многоугольники являются равносоставленными (теорема Больяй — Гервина). Поэтому разрезанием на части и перекладыванием
Равновеликие многогранники не всегда являются равносоставленными. (Поэтому при выводах формулы объёма треугольной пирамиды используют исчерпывания метод или иное завуалированное интегрирование, например Кавальери принцип. См. также Объём.) Так, например, куб и равновеликий ему правильный тетраэдр не являются равносоставленными — т. н. теорема Дена, доказанная немецким математиком М. Деном (1901) и составившая отрицательное решение третьей проблемы Гильберта. Для доказательства Ден построил некоторую систему аддитивных инвариантов, равенство которых необходимо для равносоставленности многогранников, и убедился, что среди его инвариантов есть такие, которые принимают разные значения для куба и равновеликого ему правильного тетраэдра. Эти работы были продолжены швейцарским математиком Х. Хадвигером и его учениками; в частности, Ж. П. Зидлер установил, что совпадение инвариантов Дена двух многогранников не только необходимо, но и достаточно для их равносоставленности.
Лит.: Проблемы Гильберта. Сб., М., 1969; Болтянский В. Г., Равновеликие и равносоставленные фигуры, М., 1956; Энциклопедия элементарной математики, книга 5, М., 1966.
В. Г. Болтянский.
Равновесие механической системы
Равнове'сие механи'ческой систе'мы, состояние механической системы, находящейся под действием сил, при котором все её точки покоятся по отношению к рассматриваемой системе отсчёта. Если система отсчёта является инерциальной (см. Инерциальная система отсчёта), равновесие называется абсолютным, в противном случае — относительным. Изучение условий Р. м. с. — одна из основных задач статики. Условия Р. м. с. имеют вид равенств, связывающих действующие силы и параметры, определяющие положение системы; число этих условий равно числу степеней свободы системы. Условия относительности Р. м. с. составляются так же, как и условия абсолютного равновесия, если к действующим на точки силам прибавить соответствующие переносные силы инерции. Условия равновесия свободного твёрдого тела состоят в равенстве нулю сумм проекций на три координатные оси Oxyz и сумм моментов относительно этих осей всех приложенных к телу сил, т. е.
При выполнении условий (1) тело будет по отношению к данной системе отсчёта находиться в покое, если скорости всех его точек относительно этой системы в момент начала действия сил были равны нулю. В противном случае тело при выполнении условий (1) будет совершать т. н. движение по инерции, например двигаться поступательно, равномерно и прямолинейно. Если твёрдое тело не является свободным (см. Связи механические), то условия его равновесия дают те из равенств (1) (или их следствий), которые не содержат реакций наложенных связей; остальные равенства дают уравнения для определения неизвестных реакций. Например, для тела, имеющего неподвижную ось вращения Oz, условием равновесия будет amz (Fk) = 0; остальные равенства (1) служат для определения реакций подшипников, закрепляющих ось. Если тело закреплено наложенными связями жестко, то все равенства (1) дают уравнения для определённой реакции связей. Такого рода задачи часто решаются в технике.
На основании отвердевания принципаравенства (1), не содержащие реакций внешних связей, дают одновременно необходимые (но недостаточные) условия равновесия любой механической системы и, в частности, деформируемого тела. Необходимые и достаточные условия равновесия любой механической системы могут быть найдены с помощью возможных перемещений принципа. Для системы, имеющей s степеней свободы, эти условия состоят в равенстве нулю соответствующих обобщённых сил:
Q1 = 0, Q2 = 0, xxx, Qs = 0. (2)
Из состояний равновесия, определяемых условиями (1) и (2), практически реализуются лишь те, которые являются устойчивыми (см. Устойчивость равновесия). Равновесия жидкостей и газов рассматриваются в гидростатике и аэростатике.
С. М. Тарг.
Равновесие статистическое
Равнове'сие статисти'ческое, состояние замкнутой статистической системы, в которой среднее значения всех физических величин, характеризующих состояние, не зависят от времени. Р. с. — одно из основных понятий статистической физики, играющее такую же роль, как равновесие термодинамическое в термодинамике. Р. с. не является равновесным в механическом смысле, т.к. в системе при этом не прекращаются малые флуктуации. Теория Р. с. даётся в статистической физике, которая описывает его с помощью различных Гиббса распределений (микроканонического, канонического или большого канонического) в зависимости от типа контакта системы с окружающей средой.
Равновесие термодинамическое
Равнове'сие термодинами'ческое, состояние термодинамической системы, в которое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды, после чего параметры состояния системы уже не меняются со временем. Изоляция не исключает возможности определённого типа контактов со средой (например, теплового контакта с термостатом, обмена веществом и др.). Процесс перехода системы в равновесное состояние называемое релаксацией. При Р. т. в системе прекращаются все необратимые процессы, связанные с диссипацией энергии, — теплопроводность, диффузия, химические реакции и т.д. Равновесное состояние системы определяется значениями её внешних параметров (объёма, напряжённости электрического или магнитного поля и др.), а также значением температуры. Строго говоря, параметры состояния равновесной системы не являются абсолютно фиксированными — в микрообъёмах они могут испытывать малые колебания около своих средних значений (флуктуации).
Изоляция системы осуществляется в общем случае при помощи неподвижных стенок, непроницаемых для вещества. В случае, когда изолирующие систему неподвижные стенки практически не теплопроводны (например, в Дьюара сосудах), имеет место адиабатическая изоляция, при которой энергия системы остаётся неизменной. При теплопроводящих (диатермических) стенках между системой и внешней средой, пока не установилось равновесие, возможен теплообмен. При длительном тепловом контакте такой системы с внешней средой, обладающей очень большой теплоёмкостью (термостатом), температуры системы и среды выравниваются и наступает Р. т. При полупроницаемых для вещества стенках Р. т. наступает в том случае, если в результате обмена веществом между системой и внешней средой выравниваются химические потенциалы среды и системы.
Одним из условий Р. т. является механическое равновесие, при котором невозможны никакие макроскопические движения частей системы, но поступательное движение и вращение системы как целого допустимы При отсутствии внешних полей и вращения системы условием её механического равновесия является постоянство давления во всём объёме системы. Другие необходимые условия Р. т. — постоянство температуры и химического потенциала в объёме системы. Достаточные условия Р. т. (условия устойчивости) могут быть получены из второго начала термодинамики (принципа максимальной энтропии); к ним, например, относятся: возрастание давления при уменьшении объёма (при постоянной температуре) и положительное значение теплоёмкости при постоянном давлении. В общем случае система находится в Р. т. тогда, когда термодинамический потенциал системы, соответствующий независимым в условиях опыта переменным, минимален. Например, при заданных объёме и температуре должна быть минимальна свободная энергия, а при заданных давлении и температуре — термодинамический потенциал Гиббса (см. Потенциалы термодинамические).