Большая Советская Энциклопедия (СП)
Шрифт:
Л. Н. Капорский.
Спектральные призмы: 1 — простая трёхгранная призма с преломляющим углом a = 60°; 2 — призма Корню; преломляющие углы a1 обеих прямоугольных призм, из которых она состоит, равны 30°; 3 — призма Аббе, включающая две прямоугольные призмы с преломляющими углами a1 = 30°, приклеенные к граням равнобедренной (a2 = 45°) прямоугольной отражательной призмы; показатели преломления всех трёх призм одинаковы (n1 = n2). Если луч света падает на призму Аббе так, что в отражательную призму он входит под углом, близким к нормали, его отклонение от первоначального направления при выходе из последней призмы составляет около 90°; 4 — призма Розерфорда. Центральная призма с преломляющим углом(a2 = 100° изготовляется из стекла (флинт) с большим показателем преломления n2, две боковые призмы — из стекла (крон) с малым n1, a1 = 21°; 5 — трёхкомпонентная призма Амичи. Боковые призмы изготовляются из крона,
Спектральные серии
Спектра'льные се'рии, группы спектральных линий в спектрах атомов, подчиняющиеся определённым закономерностям. Линии данной С. с. в спектрах испускания возникают при всех разрешенных квантовых переходах с различных начальных верхних энергетических уровней энергии атома на один и тот же конечный нижний уровень (в спектрах поглощения — при обратных переходах). Волновые числа линий С. с. подчиняются определённым закономерностям и сходятся к границе серии (см. рис. 1 в ст. Атом). Наиболее четко С. с. выделяются в спектрах водорода и водородоподобных атомов, гелия, щелочных металлов (серии Лаймана, Бальмера, Пашена, Брэкета, Пфаунда и Хамфри для Н; главная, диффузная и резкая серии для щелочных металлов; см. Атомные спектры).
Спектральный анализ (в линейной алгебре)
Спектра'льный ана'лиз линейных операторов, обобщение выросшей из задач механики теории собственных значений и собственных векторов матриц (т. е. линейных преобразований в конечномерном пространстве) на бесконечномерный случай (см. Линейный оператор,Операторов теория). В теории колебаний изучается движение системы с n степенями свободы в окрестности положения устойчивого равновесия, которое описывается системой линейных дифференциальных уравнений вида
где E1,..., En — операторы проектирования на взаимно перпендикулярные направления собственных векторов х1, ......, xn. Несимметрическая же матрица А (которой отвечает несамосопряжённое линейное преобразование) имеет, вообще говоря, спектр, состоящий из комплексных чисел l1, ..., l1, и может быть преобразована лишь к более сложной, чем диагональная, жордановой форме [см. Нормальная (жорданова) форма матриц], отвечающей представлению линейного преобразования А, более сложному, чем описанное выше обычное спектральное разложение.
При изучении колебаний около состояния равновесия систем с бесконечным числом степеней свободы (например, однородной или неоднородной струны) задачу о нахождении собственных значений и собственных векторов линейного преобразования в конечномерном пространстве приходится распространить на некоторый класс линейных преобразований (т. е. линейных операторов) в бесконечномерном линейном пространстве. Во многих случаях (включая, в частности, и случай колебания струны) соответствующий оператор может быть записан в виде действующего в пространстве функций f(x) интегрального оператора А, так что здесь
где К(х, у) — заданная на квадрате а lb х, у lb b непрерывная функция двух переменных, удовлетворяющая условию симметрии К(х, у) = К(у, х). В этих случаях оператор А всегда имеет полную систему попарно ортогональных собственных
где Ek — операторы проектирования на направления jk.
С. а., развитый первоначально для интегральных операторов с симметричным ядром К(х, у), определённым и непрерывным в некоторой ограниченной области, был затем в рамках общей теории операторов распространён на многие другие типы линейных операторов (например, на интегральные операторы с ядром, имеющим особенность или заданным в неограниченной области, дифференциальные операторы в пространствах функций одного или нескольких переменных и т. д.), а также на абстрактно заданные линейные операторы в бесконечномерных линейных пространствах. Оказалось, однако, что такое распространение связано с существенным усложнением С. а., так как для многих линейных операторов собственные значения и собственные функции, понимаемые в обычном смысле, вообще не существуют. Поэтому в общем случае спектр приходится определять не как совокупность собственных значений оператора А, а как совокупность тех значений, для которых оператор (А — lЕ)– 1, где Е — тождественный (единичный) оператор, не существует, или определён лишь на неплотном множестве, или является неограниченным оператором. Все собственные значения оператора принадлежат его спектру и в совокупности образуют его дискретный спектр; остальную часть спектра часто называют непрерывным спектром оператора [иногда же непрерывным спектром называют лишь совокупность тех l, при которых оператор (А — lЕ)– 1 определён на плотном множестве элементов пространства, но неограничен, а все точки спектра, не входящие ни в дискретный, ни в непрерывный спектр, называют остаточным спектром].
Наиболее разработан С. а. самосопряжённых линейных операторов в гильбертовом пространстве (обобщающих симметрические матрицы) и унитарных линейных операторов в том же пространстве (обобщающих унитарные матрицы). Самосопряжённый оператор А в гильбертовом пространстве всегда имеет чисто действительный спектр (дискретный, непрерывный или смешанный) и допускает спектральное разложение вида
где E(l) — т. н. разложение единицы (отвечающее оператору А), т. е. семейство проекционных операторов, удовлетворяющее специальным условиям. Точками спектра в данном случае являются точки роста операторной функции Е(l); в случае чисто дискретного спектра все они являются скачками Е(l), так что здесь
и спектральное разложение (*) сводится к разложению
Унитарный оператор в гильбертовом пространстве имеет спектр, расположенный на окружности |l| = 1, и допускает спектральное разложение родственного (*) вида, но с заменой интегрирования от -yen до yen интегрированием по этой окружности. Изучен также специальный класс нормальных операторов в гильбертовом пространстве, представимых в аналогичном представлению (*) виде, но где уже интегрирование в правой части распространено на более общее множество точек l комплексной плоскости, представляющее собой спектр А. Что касается С. а. несамосопряжённых и не являющихся нормальными линейных операторов, обобщающих произвольные несимметрические матрицы, то ему были посвящены многочисленные работы Дж. Биркгофа (США), Т. Карлемана (Швеция), М. В. Келдыша, М. Г. Крейна (СССР), Б. Сёкефальви-Надя (Венгрия), Н. Данфорда (США) и многих др. учёных, но тем не менее соответствующая теория ещё далека от полной завершённости.
С. а. линейных операторов имеет целый ряд важных применений в классической механике (особенно теории колебаний), электродинамике, квантовой механике, теории случайных процессов, дифференциальных и интегральных уравнений и др. областях математики и математической физики.
Лит.: Курант P., Гильберт Д., Методы математической физики, пер. с нем., 3 изд., т. 1, М. — Л., 1951; Ахиезер Н. И., Глазман И.М., Теория линейных операторов в гильбертовом пространстве, 2 изд., М., 1966; Плеснер А. И., Спектральная теория линейных операторов, М., 1965; Рисе Ф., Секефальви Надь Б., Лекции по функциональному анализу, пер. с франц., М., 1954; Секефальви-Надь Б., Фояш Ч., Гармонический анализ операторов в гильбертовом пространстве, пер. с франц., М., 1970; Данфорд Н., Шварц Дж. Т., Линейные операторы, пер. с англ., ч. 2—3, М., 1966—74; Келдыш М. В., Лидский В. Б., Вопросы спектральной теории несамосопряженных операторов, в кн.: Тр. 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 101—20.