Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (СП)
Шрифт:

Л. Н. Капорский.

Спектральные призмы: 1 — простая трёхгранная призма с преломляющим углом a = 60°; 2 — призма Корню; преломляющие углы a1 обеих прямоугольных призм, из которых она состоит, равны 30°; 3 — призма Аббе, включающая две прямоугольные призмы с преломляющими углами a1 = 30°, приклеенные к граням равнобедренной (a2 = 45°) прямоугольной отражательной призмы; показатели преломления всех трёх призм одинаковы (n1 = n2). Если луч света падает на призму Аббе так, что в отражательную призму он входит под углом, близким к нормали, его отклонение от первоначального направления при выходе из последней призмы составляет около 90°; 4 — призма Розерфорда. Центральная призма с преломляющим углом(a2 = 100° изготовляется из стекла (флинт) с большим показателем преломления n2, две боковые призмы — из стекла (крон) с малым n1, a1 = 21°; 5 — трёхкомпонентная призма Амичи. Боковые призмы изготовляются из крона,

средняя — из флинта (n2 > n1); a1 = a2 = 90°. Стрелками в случаях 1, 3, 5 показан ход луча света.

Спектральные серии

Спектра'льные се'рии, группы спектральных линий в спектрах атомов, подчиняющиеся определённым закономерностям. Линии данной С. с. в спектрах испускания возникают при всех разрешенных квантовых переходах с различных начальных верхних энергетических уровней энергии атома на один и тот же конечный нижний уровень (в спектрах поглощения — при обратных переходах). Волновые числа линий С. с. подчиняются определённым закономерностям и сходятся к границе серии (см. рис. 1 в ст. Атом). Наиболее четко С. с. выделяются в спектрах водорода и водородоподобных атомов, гелия, щелочных металлов (серии Лаймана, Бальмера, Пашена, Брэкета, Пфаунда и Хамфри для Н; главная, диффузная и резкая серии для щелочных металлов; см. Атомные спектры).

Спектральный анализ (в линейной алгебре)

Спектра'льный ана'лиз линейных операторов, обобщение выросшей из задач механики теории собственных значений и собственных векторов матриц (т. е. линейных преобразований в конечномерном пространстве) на бесконечномерный случай (см. Линейный оператор,Операторов теория). В теории колебаний изучается движение системы с n степенями свободы в окрестности положения устойчивого равновесия, которое описывается системой линейных дифференциальных уравнений вида

, где х есть n– мерный вектор отклонений обобщённых координат системы от их равновесных значений, а А — симметрическая положительно определённая матрица. Такое движение может быть представлено в виде наложения n гармонических колебаний (т. н. нормальных колебаний) с круговыми частотами, равными корням квадратным из всевозможных собственных значений l k матрицы А. Нахождение нормальных колебаний системы здесь сводится к нахождению всех собственных значений lk; и собственных векторов xk матрицы А. Совокупность всех собственных значений матрицы называют её спектром. Если матрица А — симметрическая, то её спектр состоит из n действительных чисел l1, ..., ln (некоторые из них могут совпадать друг с другом), а сама матрица с помощью перехода к новой системе координат может быть приведена к диагональному виду, т. е. отвечающее ей линейное преобразование А в n-мерном пространстве (т. н. самосопряжённое преобразование) допускает специальное представление — т. н. спектральное разложение вида

где E1,..., En операторы проектирования на взаимно перпендикулярные направления собственных векторов х1, ......, xn. Несимметрическая же матрица А (которой отвечает несамосопряжённое линейное преобразование) имеет, вообще говоря, спектр, состоящий из комплексных чисел l1, ..., l1, и может быть преобразована лишь к более сложной, чем диагональная, жордановой форме [см. Нормальная (жорданова) форма матриц], отвечающей представлению линейного преобразования А, более сложному, чем описанное выше обычное спектральное разложение.

При изучении колебаний около состояния равновесия систем с бесконечным числом степеней свободы (например, однородной или неоднородной струны) задачу о нахождении собственных значений и собственных векторов линейного преобразования в конечномерном пространстве приходится распространить на некоторый класс линейных преобразований (т. е. линейных операторов) в бесконечномерном линейном пространстве. Во многих случаях (включая, в частности, и случай колебания струны) соответствующий оператор может быть записан в виде действующего в пространстве функций f(x) интегрального оператора А, так что здесь

,

где К(х, у) заданная на квадрате а lb х, у lb b непрерывная функция двух переменных, удовлетворяющая условию симметрии К(х, у) = К(у, х). В этих случаях оператор А всегда имеет полную систему попарно ортогональных собственных

функцийjk, которым отвечает счётная последовательность действительных собственных значений lk, составляющих в своей совокупности спектр оператора А. Если рассматривать функции, на которые действует оператор А, как векторы гильбертова пространства, то действие А будет, как и в случае конечномерного самосопряжённого преобразования, сводиться к растяжению пространства вдоль системы взаимно ортогональных осей jk с коэффициентами растяжения lk (при lk < 0 такое растяжение имеет смысл растяжения с коэффициентом |lk|, объединённого с зеркальным отражением), а сам оператор А здесь снова будет иметь спектральное разложение вида

где Ek операторы проектирования на направления jk.

С. а., развитый первоначально для интегральных операторов с симметричным ядром К(х, у), определённым и непрерывным в некоторой ограниченной области, был затем в рамках общей теории операторов распространён на многие другие типы линейных операторов (например, на интегральные операторы с ядром, имеющим особенность или заданным в неограниченной области, дифференциальные операторы в пространствах функций одного или нескольких переменных и т. д.), а также на абстрактно заданные линейные операторы в бесконечномерных линейных пространствах. Оказалось, однако, что такое распространение связано с существенным усложнением С. а., так как для многих линейных операторов собственные значения и собственные функции, понимаемые в обычном смысле, вообще не существуют. Поэтому в общем случае спектр приходится определять не как совокупность собственных значений оператора А, а как совокупность тех значений, для которых оператор (А — lЕ)– 1, где Е — тождественный (единичный) оператор, не существует, или определён лишь на неплотном множестве, или является неограниченным оператором. Все собственные значения оператора принадлежат его спектру и в совокупности образуют его дискретный спектр; остальную часть спектра часто называют непрерывным спектром оператора [иногда же непрерывным спектром называют лишь совокупность тех l, при которых оператор (А — lЕ)– 1 определён на плотном множестве элементов пространства, но неограничен, а все точки спектра, не входящие ни в дискретный, ни в непрерывный спектр, называют остаточным спектром].

Наиболее разработан С. а. самосопряжённых линейных операторов в гильбертовом пространстве (обобщающих симметрические матрицы) и унитарных линейных операторов в том же пространстве (обобщающих унитарные матрицы). Самосопряжённый оператор А в гильбертовом пространстве всегда имеет чисто действительный спектр (дискретный, непрерывный или смешанный) и допускает спектральное разложение вида

 (*)

где E(l) т. н. разложение единицы (отвечающее оператору А), т. е. семейство проекционных операторов, удовлетворяющее специальным условиям. Точками спектра в данном случае являются точки роста операторной функции Е(l); в случае чисто дискретного спектра все они являются скачками Е(l), так что здесь

и спектральное разложение (*) сводится к разложению

Унитарный оператор в гильбертовом пространстве имеет спектр, расположенный на окружности |l| = 1, и допускает спектральное разложение родственного (*) вида, но с заменой интегрирования от -yen до yen интегрированием по этой окружности. Изучен также специальный класс нормальных операторов в гильбертовом пространстве, представимых в аналогичном представлению (*) виде, но где уже интегрирование в правой части распространено на более общее множество точек l комплексной плоскости, представляющее собой спектр А. Что касается С. а. несамосопряжённых и не являющихся нормальными линейных операторов, обобщающих произвольные несимметрические матрицы, то ему были посвящены многочисленные работы Дж. Биркгофа (США), Т. Карлемана (Швеция), М. В. Келдыша, М. Г. Крейна (СССР), Б. Сёкефальви-Надя (Венгрия), Н. Данфорда (США) и многих др. учёных, но тем не менее соответствующая теория ещё далека от полной завершённости.

С. а. линейных операторов имеет целый ряд важных применений в классической механике (особенно теории колебаний), электродинамике, квантовой механике, теории случайных процессов, дифференциальных и интегральных уравнений и др. областях математики и математической физики.

Лит.: Курант P., Гильберт Д., Методы математической физики, пер. с нем., 3 изд., т. 1, М. — Л., 1951; Ахиезер Н. И., Глазман И.М., Теория линейных операторов в гильбертовом пространстве, 2 изд., М., 1966; Плеснер А. И., Спектральная теория линейных операторов, М., 1965; Рисе Ф., Секефальви Надь Б., Лекции по функциональному анализу, пер. с франц., М., 1954; Секефальви-Надь Б., Фояш Ч., Гармонический анализ операторов в гильбертовом пространстве, пер. с франц., М., 1970; Данфорд Н., Шварц Дж. Т., Линейные операторы, пер. с англ., ч. 2—3, М., 1966—74; Келдыш М. В., Лидский В. Б., Вопросы спектральной теории несамосопряженных операторов, в кн.: Тр. 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 101—20.

Поделиться:
Популярные книги

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Мне нужна жена

Юнина Наталья
Любовные романы:
современные любовные романы
6.88
рейтинг книги
Мне нужна жена

Третий

INDIGO
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Вечный Данж. Трилогия

Матисов Павел
Фантастика:
фэнтези
юмористическая фантастика
6.77
рейтинг книги
Вечный Данж. Трилогия

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Егерь

Астахов Евгений Евгеньевич
1. Сопряжение
Фантастика:
боевая фантастика
попаданцы
рпг
7.00
рейтинг книги
Егерь

Дарующая счастье

Рем Терин
Любовные романы:
любовно-фантастические романы
6.96
рейтинг книги
Дарующая счастье

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Чемпион

Демиров Леонид
3. Мания крафта
Фантастика:
фэнтези
рпг
5.38
рейтинг книги
Чемпион