Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (ТЕ)
Шрифт:

На дизельных электростанциях (ДЭС), в отличие от тепловых и атомных электростанций, электромеханические генераторы приводятся во вращение не турбинами, а двигателями внутреннего сгорания — дизелями . ДЭС служат для снабжения электроэнергией районов, которые удалены от линии электропередачи и где невозможно сооружение тепловых или гидроэлектрических станций. Мощность отдельных стационарных дизельных электростанций превышает 2,2 Мвт.

Атомные электростанции (АЭС). В подавляющем большинстве АЭС паротурбинные. От тепловых электростанций они отличаются тем, что вместо парогенератора с топкой они имеют ядерный реактор , в котором энергия деления ядер урана превращается в теплоту, отдаваемую теплоносителю первого контура, чаще всего воде. В теплообменнике (парогенераторе) этот теплоноситель передаёт теплоту рабочему телу (воде) второго энергопроизводящего контура, в результате чего рабочее

тело (вода) испаряется, а полученный водяной пар направляется в паровую турбину. В некоторых случаях, в частности когда реактор охлаждается жидким металлом, между первым и вторым контуром из соображений безопасности вводится ещё один промежуточный контур с каким-либо теплоносителем.

Первая в мире АЭС (мощность 5000 квт ) была построена в СССР в 1954. В 1964 суммарная мощность АЭС в мире составила 5 Гвт, а в 1974 — около 40 Гвт. По прогнозам к 1980 в мире на АЭС будет вырабатываться около 10% всей электроэнергии. Изменение структуры энергетического баланса в пользу АЭС определяется тем, что, хотя стоимость установленного квт на АЭС примерно на 80% выше, чем на др. тепловых электростанциях, расчётные затраты на производство электроэнергии примерно одинаковы. В дальнейшем следует ожидать повышения стоимости химического топлива, что сделает АЭС экономически более выгодными.

Транспортные теплосиловые установки. На автомобильном транспорте в качестве двигателей применяются главным образом теплосиловые установки — поршневые двигатели внутреннего сгорания (ПДВС) с внешним смесеобразованием (карбюраторные двигатели) и с внутренним смесеобразованием (дизели). В ПДВС рабочим телом служат продукты сгорания топлива. В рабочем цилиндре ПДВС осуществляются все процессы, необходимые для преобразования теплоты в механическую энергию: в цилиндр засасывается топливовоздушная смесь; здесь же эта смесь сгорает; образовавшиеся продукты сгорания, расширяясь, совершают полезную работу, отдаваемую через поршень внешним механическим устройствам; продукты сгорания поршнем же выталкиваются из цилиндра в атмосферу. Различие ПДВС прежде всего определяется разными термодинамическими циклами и, как следствие, проявляется в различном конструктивном оформлении. На железнодорожном транспорте до середины 20 в. основным двигателем была паровая машина — поршневая машина, работающая па водяном паре, генерируемом в отд. паровом котле. В 70-х гг. основу локомотивного парка всех промышленно развитых стран составляют тепловозы (локомотивы, оснащенные мощным дизелем) и электровозы . Перспективны газотурбовозы . В судовой энергетике используют все перечисленные выше виды теплосиловых установок — от небольших автомобильных двигателей до паротурбинных установок мощностью в десятки Мвт. В авиации для приведения в движение летательных аппаратов служат следующие тепловые двигатели: поршневые авиационные двигатели , передающие механическую энергию на воздушный винт: турбовинтовые двигатели , основная тяга которых создаётся воздушным винтом, а дополнительная тяга (8—12%) — в результате истечения продуктов сгорания; реактивные двигатели , тяга которых возникает при истечении с большой скоростью рабочего тела (продуктов сгорания топлива) из реактивного сопла (см. также Турбореактивный двигатель , Жидкостный ракетный двигатель , Ракетный двигатель ).

Установки прямого преобразования тепловой энергии. Рассмотренные выше теплосиловые установки преобразуют теплоту в механическую энергию, которая на электростанциях превращается в электроэнергию с помощью электромеханических генераторов либо затрачивается на движение в двигательных установках. Однако возможно непосредственное преобразование теплоты в электроэнергию с помощью так называемых установок прямого преобразования энергии. Наиболее перспективны установки с магнитогидродинамическим генератором (МГД-генератором). Термодинамический цикл электростанции с МГД-генератором, работающим на продуктах сгорания органического топлива, аналогичен циклу газотурбинной установки. В камеру сгорания подаются топливо и сжатый воздух, предварительно подогретый до возможно более высокой температуры либо обогащенный кислородом. Это необходимо, чтобы тем или иным способом получить теоретическую температуру горения топлива — около 3000 К. При такой температуре продукты сгорания, к которым добавляют некоторое количество ионизирующейся добавки — щелочной металл (чаще всего калий), переходят в состояние плазмы и становятся достаточно электропроводными. В канале МГД-генератора кинетическая энергия плазмы непосредственно преобразуется в электроэнергию в результате взаимодействия потока плазмы с неподвижным магнитным полем МГД-генератора. После генератора продукты сгорания тем или иным способом охлаждаются, очищаются от ионизирующейся присадки и сбрасываются в дымовую трубу. Мощность отдельных МГД-генераторов на продуктах сгорания составляет несколько десятков Мвт (1975). Так как температура газов после

генератора очень велика (более 2000 К), рационально использовать МГД-установку в комплексе с обычной паротурбинной станцией. В этом случае теплота, отбираемая от газов, идёт на производство пара для паротурбинной установки. Кпд такой комбинированной установки может достигать 50—60%. Такое повышение кпд очень важно также с точки зрения уменьшения тепловых выбросов электростанций в окружающую среду. Так, если принять, что кпд тепловой электростанции составляет около 40%, то при увеличении кпд до 60% количество сбрасываемой теплоты уменьшится примерно в 2,3 раза (при одинаковой электрической мощности станций).

Для малых энергетических установок специального назначения, например для бортовых источников электроэнергии космических кораблей, разрабатываются и находят применение термоэлектрические и термоэмиссионные установки прямого преобразования энергии. Термоэлектрический генератор (ТЭГ) состоит из двух полупроводниковых термоэлементов с разным типом проводимости — электронной и дырочной. С одного торца эти элементы соединяются между собой коммутационной пластиной, а к свободным их торцам присоединяются электрические контакты для подключения к внешней цепи. Если торцы (спаи) элементов поддерживать при различной температуре, то возникает термоэлектродвижущая сила, пропорциональная разности температур торцов. Когда цепь термоэлементов замкнута на внешнее сопротивление, в ней возникает электрический ток, при протекании которого в горячем спае начнёт поглощаться теплота, а в холодном — выделяться. Если пренебречь джоулевыми потерями в цепи (см. Джоуля-Ленца закон ) и перетоком теплоты теплопроводностью от горячего спая к холодному, то кпд термоэлемента окажется равным кпд цикла Карно для температур, соответствующих температурам спаев. Действительные значения кпд термоэлементов и составленных из них ТЭГ существенно меньше и достигают при разностях температур между спаями в 400—500 К в лучшем случае нескольких процентов. Этим, а также высокой стоимостью самих термоэлементов объясняется малая распространённость ТЭГ, несмотря на их крайнюю простоту и отсутствие каких-либо движущихся частей.

Простейший термоэмиссионный преобразователь энергии (ТЭП) аналогичен двухэлектродной электронной лампе (диоду ). Если катод и анод лампы поддерживать при разных температурах, подводя к катоду теплоту и отводя её от анода, то электроны, вылетающие из катода в результате термоэлектронной эмиссии, устремятся к аноду, заряжая его отрицательно. Если анод и катод во внешней цени соединить через какое-либо сопротивление, то за счёт разности потенциалов во внешней цепи пойдёт ток. Если пренебречь необратимыми потерями, кпд ТЭП также близок к кпд соответствующего цикла Карно. Реальный же кпд ТЭП не более 7—8%, прежде всего из-за больших потерь теплоты излучением между катодом, имеющим температуру около 2000 К, и анодом — около 1000 К. ТЭГ и ТЭП представляют интерес в сочетании с ядерными источниками теплоты, образуя полностью статичные автономные источники электроэнергии.

Лит.: Фаворский О. Н., Установки для непосредственного преобразования тепловой энергии в электрическую, М., 1965; Алексеев Г. Н., Преобразование энергии, М., 1966; Рыжкин В. Я,, Тепловые электрические станции, М.—Л., 1967; Маргулова Т. Х., Атомные электрические станции, 2 изд., М., 1974; Магнитогидродинамический метод получения электроэнергии, в. 3, М., 1972.

В. А. Кириллин, Э. Э. Шпильрайн.

Схема конденсационной паротурбинной электростанции: 1 — топка котлоагрегата; 2 — экранные трубы; 3 — пароперегреватель; 4 — барабан котлоагрегата; 5 — пароперегреватель для промежуточного перегрева; 6 — экономайзер; 7 — воздухоподогреватель; 8 — паровая турбина; 9 — генератор; 10 — конденсатор; 11 — конденсатный насос; 12 — регенеративный подогреватель; 13 — питательный насос; 14 — вентилятор; 15 — золоуловитель; 16 — дымосос; 17 — дымовая труба.

«Теплоэнергетика»

«Теплоэнерге'тика», ежемесячный научно-технический журнал, орган АН СССР, Государственного комитета Совета Министров СССР по науке и технике и центрального правления научно-технического общества энергетики и электротехнической промышленности. Издаётся в Москве с 1954. «Т.» — ведущий журнал в области большой энергетики. Публикует материалы о тепловых и ядерных электростанциях, парогенераторах, паровых и газовых турбинах. Освещает вопросы автоматизации и применения вычислительной техники в тепловой энергетике, вопросы теории горения, водоподготовки, теплофикации, тепло- и массообмена и др. Переиздаётся на английском языке в Великобритании и США. Тираж (1976) 10,1 тысяч экземпляров.

Тепсень

Тепсе'нь, холм с остатками раннесредневекового поселения 8—10 вв. у поселка Планерское в Крымской области УССР. Поселение относится к периоду интенсивного заселения Таврики племенами — носителями салтово-маяцкой культуры , проникшими сюда из Приазовья. При раскопках открыты фундаменты нескольких христианских храмов, жилища, обломки сосудов салтово-маяцкого типа, жернова. литейные формы, куфические и византийские монеты, характеризующие занятия и торговые связи жителей Т.

Поделиться:
Популярные книги

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Бальмануг. Студентка

Лашина Полина
2. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. Студентка

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Теневой путь. Шаг в тень

Мазуров Дмитрий
1. Теневой путь
Фантастика:
фэнтези
6.71
рейтинг книги
Теневой путь. Шаг в тень

Защитник

Астахов Евгений Евгеньевич
7. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Защитник

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Проклятый Лекарь IV

Скабер Артемий
4. Каратель
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь IV

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Тринадцатый V

NikL
5. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый V

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2