Большая Советская Энциклопедия (ТЯ)
Шрифт:
Следует подчеркнуть, что создание теории тяготения Эйнштейна стало возможным только после открытия неевклидовой геометрии русским математиком Н. И. Лобачевским , венгерским математиком Я. Больяй , немецкими математиками К. Гауссом и Б. Риманом .
В отсутствие Т. движение тела по инерции в пространстве-времени специальной теории относительности изображается прямой линией, или, на математическом языке, экстремальной (геодезической) линией. Идея Эйнштейна, основанная на принципе эквивалентности и составляющая основу теории Т., заключается в том, что и в поле Т. все тела движутся по геодезическим линиям в пространстве-времени, которое, однако, искривлено, и, следовательно, геодезические линии уже не прямые.
Массы, создающие поле Т., искривляют пространство-время. Тела, которые движутся в искривленном пространстве-времени, и в этом случае движутся по одним и тем же геодезическим
Вторая важная идея, лежащая в основе теории Эйнштейна, — утверждение, что Т., то есть искривление пространства-времени, определяется не только массой вещества, слагающего тело, но и всеми видами энергии, присутствующими в системе. Эта идея явилась обобщением на случай теории Т. принципа эквивалентности массы (m ) и энергии (Е ) специальной теории относительности, выражающейся формулой Е = mс2. Согласно этой идее, Т. зависит не только от распределения масс в пространстве, но и от их движения, от давления и натяжений, имеющихся в телах, от электромагнитного поля и всех др. физических полей.
Наконец, в теории тяготения Эйнштейна обобщается вывод специальной теории относительности о конечной скорости распространения всех видов взаимодействия. Согласно Эйнштейну, изменения гравитационного поля распространяются в вакууме со скоростью с.
Уравнения тяготения Эйнштейна
В специальной теории относительности в инерциальной системе отсчёта квадрат четырёхмерного «расстояния» в пространстве-времени (интервала ds ) между двумя бесконечно близкими событиями записывается в виде:
ds2= (cdt )2– dx2– dy2– dz2 (7)
где t — время, х, у, z — прямоугольные декартовы (пространственные) координаты. Эта система координат называется галилеевой. Выражение (7) имеет вид, аналогичный выражению для квадрата расстояния в евклидовом трёхмерном пространстве в декартовых координатах (с точностью до числа измерений и знаков перед квадратами дифференциалов в правой части). Такое пространство-время называют плоским, евклидовым, или, точнее, псевдоевклидовым, подчёркивая особый характер времени: в выражении (7) перед (cdt )2 стоит знак «+», в отличие от знаков «—» перед квадратами дифференциалов пространственных координат. Таким образом, специальная теория относительности является теорией физических процессов в плоском пространстве-времени (пространстве-времени Минковского; см. Минковского пространство ).
В пространстве-времени Минковского не обязательно пользоваться декартовыми координатами, в которых интервал записывается в виде (7). Можно ввести любые криволинейные координаты. Тогда квадрат интервала ds2 будет выражаться через эти новые координаты общей квадратичной формой:
ds2 = gikdx idx k (8)
(i , k = 0, 1, 2, 3), где x 1, x 2, x 3— произвольные пространств, координаты, x = ct — временная координата (здесь и далее по дважды встречающимся индексам производится суммирование). С физической точки зрения переход к произвольным координатам означает и переход от инерциальной системы отсчёта
В общей теории относительности пространство-время не плоское, а искривленное. В искривленном пространстве-времени (в конечных, не малых, областях) уже нельзя ввести декартовы координаты, и использование криволинейных координат становится неизбежным. В конечных областях такого искривленного пространства-времени ds2 записывается в криволинейных координатах в общем виде (8). Зная gik как функции четырёх координат, можно определить все геометрические свойства пространства-времени. Говорят, что величины gik определяют метрику пространства-времени , а совокупность всех gik называют метрическим тензором. С помощью gik вычисляются темп течения времени в разных точках системы отсчёта и расстояния между точками в трёхмерном пространстве. Так, формула для вычисления бесконечно малого интервала времени d t по часам, покоящимся в системе отсчёта, имеет вид:
При наличии поля Т. величина g00 в разных точках разная, следовательно, темп течения времени зависит от поля Т. Оказывается, что чем сильнее поле, тем медленнее течёт время по сравнению с течением времени для наблюдателя вне поля.
Математическим аппаратом, изучающим неевклидову геометрию (см. Риманова геометрия ) в произвольных координатах, является тензорное исчисление . Общая теория относительности использует аппарат тензорного исчисления, её законы записываются в произвольных криволинейных координатах (это означает, в частности, запись в произвольных системах отсчёта), как говорят, в ковариантном виде.
Основная задача теории Т.— определение гравитационного поля, что соответствует в теории Эйнштейна нахождению геометрии пространства-времени. Эта последняя задача сводится к нахождению метрического тензора gik.
Уравнения тяготения Эйнштейна связывают величины gik с величинами, характеризующими материю, создающую поле: плотностью, потоками импульса и т.п. Эти уравнения записываются в виде:
Здесь Rik — так называемый тензор Риччи, выражающийся через gik , его первые и вторые производные по координатам; R = Rik g ik (величины g ik определяются из уравнений gikg km =