Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла
Шрифт:
Ничего подобного нет в начале расширения Вселенной. Ее вещество до образования небесных тел было однородно, никаких перепадов плотности и давления не было. Поэтому не возникало силы, которая могла бы служить причиной начала расширения. Следовательно, большое давление горячего газа не есть причина начала расширения Вселенной.
Что же послужило «первотолчком», давшим начальные скорости веществу? Для того, чтобы восстановить процессы, происходившие в самом начале расширения,. необходимо найти в сегодняшней Вселенной следы этих наиболее «древних» процессов.
Оказывается, такими. «следами» являются фундаментальные свойства сегодняшней Вселенной. Без специального объяснения происхождения этих свойств во время взрыва Вселенной
Первая из таких загадок — однородность Вселенной в больших масштабах. Наблюдения показывают, что на расстояниях больше сотен мегапарсек скопления галактик распределены в пространстве однородно. Правда, для больших расстояний выводы делать трудно из-за сложности наблюдения далеких слабых объектов. Подобные наблюдения еще ничего не говорят впрямую и о распределении «скрытой массы» — невидимых (несветящихся} форм вещества. Тем не менее вывод о крупномасштабной однородности Вселенной и для видимого, и (что особенно важно) невидимого вещества вполне надежен. Как он получен?
Инструментом исследования послужило реликтовое излучение.
Сегодня Вселенная совсем прозрачна для этого излучения, но в прошлом было не так. Когда температура превышала 4000 К, все вещество представляло собой ионизованную плазму (отдельных небесных тел тогда еще не было), непрозрачную для реликтового излучения. Превращение плазмы в нейтральное вещество произошла спустя 300 тыс. лет после начала расширения и, начиная с этой эпохи, подавляющее большинство реликтовых фотонов движется по прямой, уже не взаимодействуя о нейтральными атомами. Поэтому, когда мы наблюдаем реликтовое излучение, мы заглядываем в прошлое — в ту далекую эпоху, которая называется эпохой рекомбинации, поскольку тогда происходил захват электронов атомными ядрами и образовывалось нейтральное вещество. За время, прошедшее с эпохи рекомбинации, излучение успевает преодолеть около 15 млрд. световых лет. Это максимальное расстояние, которое свет пройдет в расширяющейся Вселенной, даже если он вышел в самом начале расширения, т. е. 15 млрд. лет назад. Поэтому такое расстояние называют расстоянием до горизонта видимости. Таким образом, с помощью реликтового излучения мы «просматриваем» практически всю доступную наблюдениям область Вселенной.
Чем же реликтовое излучение может помочь в решении вопроса, насколько однородна Вселенная? Дело в том, что это излучение несет информацию о свойствах Вселенной в точках, разнесенных очень далеко в пространстве. И эти свойства оказываются до удивления одинаковыми. Так, измерения на искусственном спутнике «Реликт», выполненные в Институте космических исследований АН СССР, показали, что интенсивность реликтового излучения, приходящего к нам из диаметрально противоположных точек на небе, одинакова с точностью по крайней мере до сотых долей процента. Поскольку каждый такой луч идет к нам практически от горизонта, то значит, точки, из которых вышло реликтовое излучение, разнесены сегодня на 30 млрд. световых лет. А излучение свидетельствует, что свойства этих областей совершенно одинаковы.
Но, что, собственно, удивительного в том, что в очень больших масштабах Вселенная однородна? Удивительно это по следующей причине. Световой сигнал, вышедший из одной из точек даже 15 млрд. лет назад, не успеет пройти расстояние 30 млрд. световых лет. Быстрее света ничто не может двигаться. Значит, никакой сигнал не успеет пройти от одной точки до другой, отстоящей от первой на 30 млрд. световых лет. Нет никаких причин для выравнивания или «согласования» условий в этих точках, раз они не успели с начала расширения Вселенной даже обменяться сигналами. И тем не менее условия в них одинаковы. Почему?
Это и есть первая загадка, которую должна решить теория. Она получила название «проблемы горизонта».
Перейдем теперь ко второму фундаментальному свойству Вселенной, которое также нуждается в объяснении. Мы уже говорили, что расширение
С другой стороны, если бы кинетическая энергия в начале была заметно больше, то галактики сегодня разлетались бы по инерции совсем не тормозясь тяготением. То значение плотности вещества, при котором обе энергии уравновешиваются, называется критическим. Наблюдения показывают, что в первые мгновения расширения плотность была чрезвычайно близка к критическому значению. Рассмотрим для примера момент времени в прошлом, очень близкий к началу расширения, когда, согласно современной теории единое физическое взаимодействие, определяющее все процессы в веществе, распалось и сильное ядерное взаимодействие стало играть самостоятельную роль. Этот момент называют эпохой «Великого объединения», он отстоит от начала расширения всего на 10– 33 с. Согласно данным наблюдений о скорости расширения и средней плотности вещества сегодня, и по расчетам по модели Фридмана, в эпоху «Великого объединения» отличие плотности от критической составляло менее 10– 50 доли от значения самой плотности!
Таким образом, в самом начале расширения плотность вещества во Вселенной была удивительно близка к критической. Но почему? Почему силу взрыва, которая определила скорость расширения, природа подобрала такой, что критическая плотность с величайшей точностью совпала с реальной плотностью вещества?
Это и составляет вторую загадку Вселенной, называемую иногда «проблемой критической плотности».
Следующая проблема: почему, несмотря на удивительную однородность Вселенной в очень больших масштабах, в меньших масштабах все же были отклонения от однородности — небольшие первичные флуктуации? Именно эти небольшие сгущения потом под действием сил тяготения уплотнялись и образовали, уже в эпоху, близкую к нашей, галактики и их скопления.
Наконец, существует еще одна проблема. Она связана с предсказываемыми современной теорией особыми частицами, такими, например, как магнитные монополи. Эти своеобразные частицы возникли во Вселенной в эпоху «Великого объединения». Их должно было возникнуть тогда необычайно много. Правда, в ходе последующей эволюции часть монополей и их античастиц — антимонополей проаннигилируют друг с другом. Но, как показали расчеты Я.Б. Зельдовича и М.К. Хлопова, в сегодняшней Вселенной монополей должно остаться очень много — примерно столько же, сколько обычных частиц — протонов. Но ведь монополи в 1016 раз массивнее протонов. Это значит, что плотность вещества в виде монополей в сегодняшней Вселенной была бы в 1016 (!) раз больше, чем плотность обычного видимого вещества. Такого, конечно, не может быть. Следовательно, в сегодняшней Вселенной монополей практически нет. Куда же они делись?
Эта загадка получила название «проблемы монополей».
Перечисленные загадки связаны с теми процессами, которые происходили в самом начале расширения Вселенной, т. е. в них в зашифрованном виде хранится тайна начала. Оставалось подобрать ключ к шифру.
Мы изложим гипотезы, которые по современным представлениям описывают начало Большого взрыва. Ключ к пониманию «первотолчка» лежит в возникновении особого, так называемого вакуумноподобного состояния вещества, которое может возникать при очень большой плотности. В современной физике под большой плотностью понимается плотность, близкая к величине, определяемой тремя фундаментальными постоянными: G — постоянной тяготения, h — постоянной Планка и c — скоростью света: