Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:
Именно аналог формулы Пифагора (я буду называть его формулой Минковского) привел Германа Минковского к его открытию абсолютного пространства-времени. Особенности этой формулы не существенны для того, о чем будет говориться далее, и мы не будем останавливаться на них (любознательные читатели, тем не менее, могут обратить внимание на Врезку 2.1). Главное то, что события в пространстве-времени аналогичны точкам в пространстве, и существует абсолютный интервал между любыми двумя событиями в пространстве-времени полностью аналогичный прямой линии между любыми двумя точками на плоском листе бумаги.
Врезка 2.1
Формула Минковского
Вы проноситесь мимо меня в мощной спортивной машине, длина которой 1 километр,
Поскольку пространство и время относительны (ваше пространство — это смесь моего пространства и времени), интервал времени между «выстрелом» (событие В) и взрывом петарды (событие X), измеренный вами, будет отличаться от того, который получится у меня. Между этими событиями прошло либо 2,0 микросекунды вашего времени, либо 4,51 микросекунды моего. Аналогично, у нас будут разночтения относительно того, на каком расстоянии друг от друга эти события произошли. Оказывается, что в вашем пространстве между ними ровно 1 километр, а в моем — 1,57 километра. Несмотря на эти расхождения, и у вас и у меня получится, что «абсолютный интервал» между этими событиями (расстояние в пространстве-времени) равен 0,8 км (аналогично тому, как расстояние по прямой между Млединой и Сероной оказалось одинаковым по мужской и по женской карте).
Для вычисления абсолютных интервалов можно воспользоваться формулой Минковского: сначала надо перевести временные интервалы из секунд в километры, умножив их на скорость света (299792 километров в секунду); округленные величины — 0,6 км вашего времени или 1,35 км моего — приведены на диаграмме. Затем следует возвести расстояния и времена в квадрат, вычесть из квадрата расстояния квадрат временного интервала и извлечь из результата квадратный корень (это похоже на применение теоремы Пифагора для вычисления расстояния между островами, с той разницей, что в ней квадраты складываются).
Как видно на диаграммах, несмотря на то, что расстояния и временные интервалы между В и X у нас с вами разные, абсолютные интервалы, полученные вами и мной, совпадают (0,8 км).
Знак «минус» в формуле Минковского (вместо «плюса» в формуле Пифагора) является отражением глубокого физического отличия временной координаты от координат пространственных, которое я не буду сейчас объяснять, чтобы не запутать вас. Желающие могут прочесть об этом более подробно в книге Тейлора и Уилера (1992 г.).
Универсальность этого интервала (т. е. его величина не зависит от того, какая система отсчета использована для его вычисления) показывает, что пространство-время является абсолютной реальностью; это четырехмерная структура, свойства которой не зависят от чьего-либо движения.
Как мы увидим в дальнейшем, гравитация может порождать кривизну (изгибы) этой абсолютной пространственно-временной структуры, и черные дыры, белые дыры, гравитационные волны и сингулярности состоят целиком и исключительно из этой структуры; все они суть различные виды искривлений пространства-времени.
Может показаться странным, что мы не воспринимаем пространство-время как единую, абсолютную структуру в нашей повседневной жизни. Это происходит из-за того, что мы живем в мире, где все движется медленно — и гоночные машины, и самолеты, и даже современные
Как вы можете вспомнить, именно Минковский был тем самым преподавателем математики, который называл Эйнштейна в его студенческие годы лентяем. В 1902 г. Минковский (русский по происхождению) оставил ЕТН и перебрался из Цюриха в Геттинген (Германия), где ему предложили более привлекательную профессуру (наука тогда была такой же интернациональной, как и сейчас). В Геттингене Минковский познакомился со статьей Эйнштейна, которая произвела на него огромное впечатление. Именно она подтолкнула его к открытию в 1908 г. абсолютного четырехмерного пространства-времени.
На Эйнштейна открытие Минковского впечатления не произвело. Минковский просто переписал законы специальной теории относительности на новом, более математическом языке. Эйнштейн вообще считал, что математики часто затуманивают физические идеи, лежащие в основе законов. В то время как Минковский всячески подчеркивал элегантность его пространственно-временного представления, Эйнштейн шутил, что Геттингенские математики описывают теорию относительности на таком сложном языке, что физикам ее не понять.
Природа, как оказалось, сама решила подшутить над Эйнштейном. В 1912 г., после четырех лет поисков, он понял, что именно пространство-время Минковского необходимо для того, чтобы включить гравитацию в теорию относительности. К сожалению, сам Минковский не узнал об этом: он умер в 1909 г. от аппендицита в возрасте 45 лет.
Я вернусь к абсолютному пространству-времени Минковского позднее в этой главе. Но вначале давайте проследим, какие шаги предпринимал Эйнштейн, пытаясь объединить ньютоновские законы тяготения и специальную теорию относительности, до того, как он воздал должное открытию Минковского.
Ньютон рассматривал гравитацию как силу притяжения, которая возникает между любыми двумя объектами во Вселенной. Чем больше эти объекты и чем ближе они друг к другу, тем сильнее притяжение. Если быть точнее, сила притяжения пропорциональна произведению масс объектов и обратно пропорциональна квадрату расстояния между ними.
Появление этого закона стало настоящим прорывом в науке. В сочетании с ньютоновскими законами движения он объяснял орбиты, по которым планеты движутся вокруг Солнца, а спутники вокруг планет, причину возникновения океанских приливов и отливов, давал ответ на вопрос, почему все предметы падают на землю. Этот закон дал возможность Ньютону и его соотечественникам определить массу Земли и Солнца [54] .
54
Подробнее см. примечание к с. 55.
В течение двух столетий, разделявших Ньютона и Эйнштейна, точность астрономических измерений повысилась многократно, что позволило подвергнуть теорию тяготения Ньютона еще более строгим испытаниям. Иногда результаты таких измерений казались противоречащими законам Ньютона, но затем неизбежно оказывалось, что либо сами измерения, либо их интерпретация ошибочны. Законы Ньютона одерживали победу вновь и вновь. Например, когда выяснилось, что движение планеты Уран (открытой в 1781 г.) противоречит предсказаниям ньютоновского закона тяготения, возникло подозрение, что это результат воздействия на Уран другой, еще не открытой планеты. Вычисления, сделанные У.ЖЛеверье и основанные исключительно на законах Ньютона и наблюдениях за движением Урана, позволили предсказать, в какой точке небесной сферы эта планета должна находиться. В 1846 г. И.Г. Галле обнаружил эту планету, невидимую для невооруженного глаза, направив в эту точку свой телескоп. Эта новая планета, открытие которой стало триумфом ньютоновского закона гравитации, получила название Нептун.