Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:
В начале XX века оставалось лишь два очень слабых, но необъяснимых несоответствия астрономических наблюдений с законом тяготения Ньютона. Как оказалось, первое из них, касающееся особенностей орбиты Меркурия, действительно было результатом ошибочности закона тяготения Ньютона. Другое несоответствие — некоторая странность в движении Луны была просто результатом неверной интерпретации астрономических наблюдений. И, как это обычно бывает в случае чрезвычайно точных измерений, было очень сложно понять, заслуживают ли внимания результаты этих двух наблюдений, или хотя бы одно из них.
Эйнштейн чувствовал, что особенность движения Меркурия (аномальное смещение его перигелия, см. Врезку 2.2) — это реальность, а особенности движения Луны — нет. Но даже подозрение, что противоречие между наблюдениями и законом Ньютона действительно имеет место, было для Эйнштейна куда менее интересным
55
То, что ньютоновский закон тяготения нарушает принцип относительности Эйнштейна, вообще говоря, не очевидно, так как этот принцип был сформулирован применительно к инерциальным системам отсчета и, соответственно, не может быть использован при наличии гравитации (не существует способа экранировать систему отсчета от гравитации и, таким образом, дать ей возможность двигаться под влиянием только ее собственной инерции). Однако Эйнштейн был уверен, что существует способ распространить его принцип и на области, где есть гравитация («обобщить» его, включив в рассмотрение гравитационные эффекты), и именно этот, еще не оформившийся «обобщенный принцип относительности» и нарушался законом тяготения Ньютона.
Врезка 2.2
Смещение перигелия Меркурия
Согласно Кеплеру, орбита Меркурия должна представлять собой эллипс, в одном из фокусов которого находится Солнце (левая диаграмма, на которой эксцентриситет орбиты показан в увеличенном виде). Однако в конце XIX века астрономы обнаружили, что орбита Меркурия не совсем эллиптична. После каждого оборота Меркурий оказывался сдвинутым относительно той точки, где он был во время предыдущего витка. Этот сдвиг можно описывать, используя величину смещения ближайшей к Солнцу точки на орбите Меркурия за один оборот (смещение его перигелия). Астрономы измерили эту величину, и она оказалась равна 1,38 угловой секунды.
Вычисления с помощью законов Ньютона предсказывали смещение величиной 1,28 угловой секунды: оно было результатом притяжения Юпитера и других планет. Оставалась необъяснимой 0,1 угловой секунды — аномальный сдвиг перигелия Меркурия. Астрономы утверждали, что погрешность их измерений не превышает 0,01 угловой секунды, однако, если принять во внимание, как малы величины, о которых идет речь (0,01 угловой секунды — это угол, под которым человеческий волос виден с расстояния в 2 километра), легко понять, почему многие физики того времени относились к этим утверждениям с недоверием, и предполагали, что, в конце концов, законы Ньютона все равно окажутся верны.
Рассуждения Эйнштейна были просты: согласно Ньютону, сила гравитационного притяжения зависит от расстояния между притягивающимися объектами (например, Солнцем и Меркурием), но, согласно теории относительности, это расстояние различно в различных системах отсчета. Так, теория относительности Эйнштейна предсказывала, что расстояние между Солнцем и Меркурием будет отличаться примерно на одну миллиардную часть, если измерять его с поверхности Солнца или с поверхности Меркурия соответственно. Если обе системы отсчета, связанная с Солнцем и связанная с Меркурием, одинаково хороши с точки зрения законов физики, какая же из них должна быть использована при определении того расстояния, которое входит в формулу Ньютона? Какую бы из них мы не выбрали, принцип относительности будет нарушен! Это противоречие убедило Эйнштейна в том, что закон тяготения Ньютона неточен.
Дерзость Эйнштейна была беспримерной. Отвергнув ньютоновские понятия об абсолютном пространстве и времени, при том, что для этого практически не было экспериментальных предпосылок, он собирался теперь отказаться от закона тяготения Ньютона, столь успешно применяемого, хотя экспериментальных свидетельств его некорректности бьшо еще меньше! На самом деле, Эйнштейн руководствовался не результатами опытов, а собственным, глубочайшим интуитивным видением того, какими должны быть физические законы.
Эйнштейн начал поиски нового закона тяготения в 1907 г. Его первые шаги были связаны с работой над обзорной статьей о его специальной теории относительности и ее следствиях. Хотя в своем патентом бюро он числился всего лишь как «технический эксперт второго класса» (недавно повышенный с третьего), он уже был настолько признан среди ведущих физиков мира, что его пригласили написать такой обзор для ежегодного выпуска Jahrbuch der Radioaktivitat und Electronik. В процессе работы над обзором Эйнштейн открыл очень плодотворный метод научных исследований: оказалось, что необходимость изложить предмет в последовательной, законченной, «педагогической» форме заставляет автора по-новому взглянуть на него. Она заостряет внимание на всех «белых пятнах» и заставляет заполнять их.
В данном случае гравитация была огромным белым пятном; специальная теория относительности с ее инерциальными системами отсчета, на которые не действовало тяготение, гравитацию попросту игнорировала. Поэтому, работая над обзором, Эйнштейн все время искал возможность включить гравитацию в теорию относительности. Как это часто бывает с людьми, увлеченными какой-либо проблемой, даже тогда, когда он не думал непосредственно об этой проблеме, она крутилась у него в подсознании. Озарение пришло ноябрьским днем 1907 г. Эйнштейн позднее писал: «Я сидел на стуле в патентном офисе в Берне, когда внезапная мысль пронзила меня — если человек находится в свободном падении, он не чувствует свой собственный вес!»
Сейчас такая мысль может прийти в голову и вам, и мне, но вряд ли мы с вами сделаем из нее далеко идущие выводы. Но Эйнштейн был не таким, как все. Каждую идею он доводил до логического завершения, выжимая из нее все до последней капли. И для него эта мысль стала шагом к совершенно новому взгляду на гравитацию. Позднее он говорил: «это была самая счастливая мысль в моей жизни».
Рассуждения, немедленно последовавшие за этой мыслью, были включены Эйнштейном в обзор. Если вы свободно падаете (например, спрыгнув с обрыва), вы не только не будете чувствовать свой собственный вес, вам будет казаться, что возле вас гравитация вообще исчезла. Например, если вы выпустите из рук несколько камешков во время своего падения, эти камешки будут продолжать падать рядом с вами. Глядя только на эти камешки, вы не сможете отличить, падаете ли вы вместе с ними на Землю или находитесь в состоянии покоя вдали от Земли и других притягивающих тел. В самом деле, понял Эйнштейн, в вашем непосредственном окружении гравитация оказывается столь несущественной, практически не обнаружимой, что все законы физики в малой системе отсчета (лаборатории), которая падает вместе с вами, должны быть такими же, как если бы вы двигались свободно во вселенной без гравитации. Другими словами, ваша малая, свободно падающая система отсчета «эквивалентна» инерциальной системе отсчета в пространстве без гравитации, и все законы физики в этих системах будут одинаковыми; для них будет полностью справедлива теория относительности (позднее мы узнаем, почему свободно падающая система отсчета должна быть малой, а слово «малая» означает, что ее размеры много меньше, чем размеры Земли или, в общем случае, много меньше расстояний, на которых направление и величина гравитационных сил существенно изменяются).
В качестве примера эквивалентности между инерциальной системой отсчета в пространстве без гравитации и вашей малой свободно падающей системой рассмотрим закон специальной теории относительности, который описывает движение свободно движущегося предмета (пусть это будет пушечное ядро) во вселенной без гравитации. В любой инерциальной системе отсчета в этой идеализированной вселенной ядро должно двигаться по прямой линии с постоянной скоростью. Сравним это с движением ядра в нашей реальной, наделенной гравитацией, Вселенной: если ядро вылетело из пушки, стоящей на травянистом лугу, то с точки зрения собаки, сидящей на траве, оно опишет дугу и упадет обратно на Землю (см. рис. 2.2). Оно будет двигаться по параболе (сплошная линия) в системе отсчета этой собаки. Теперь давайте рассмотрим движение ядра в малой, свободно падающей системе отсчета. Проще всего это будет сделать, если луг находится у края обрыва. Тогда вы сможете спрыгнуть с обрыва в тот момент, когда пушка выстрелит, и наблюдать за ядром в процессе своего падения.