Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:
Митчелл, который был ректором университета Торнхилл в английском городе Йоркшир, доложил о своем предсказании существования темных звезд на заседании Лондонского Королевского общества 27 ноября 1783 г. Этот доклад определенно стал сенсацией среди британских ученых. Через тринадцать лет французский философ Пьер Симон Лаплас опубликовал аналогичное предсказание в первом издании своей знаменитой работы Система мира, без ссылки на Митчелла. Это предсказание присутствовало и во втором издании (1799 г.), однако незадолго до выхода в свет третьего издания (1808 г.) Томас Юнг открыл явление интерференции света [58] , что заставило натурфилософов отказаться от корпускулярной
58
Глава 10.
* * *
Только после того как Эйнштейн сформулировал свои релятивистские законы гравитации в ноябре 1915 г., у физиков вновь появилась уверенность в том, что они понимают природу и света, и тяготения настолько хорошо, что могут рассчитать, как притяжение звезды влияет на излучаемый ею свет. Теперь они снова могли вернуться к рассмотрению темных звезд (черных дыр) Митчелла и Лапласа.
Первый шаг сделал Карл Шварцшильд, один из самых выдающихся астрофизиков начала XX столетия. Шварцшильд служил в немецкой армии и воевал на русском фронте (шла Первая мировая война), когда прочитал в Известиях Прусской академии наук доклад Эйнштейна, посвященный общей теории относительности. Сразу после этого он задался вопросом: какие предсказания, касающиеся звезд, следуют из новых законов гравитации?
Поскольку анализ несферических или вращающихся звезд был математически слишком сложен, Шварцшильд решил ограничиться вначале невращающимися звездами, имеющими форму идеального шара, и получить решение для пространства вокруг звезды, оставив рассмотрение ее внутренней области на потом. Ему потребовалось всего несколько дней для того, чтобы, используя уравнение поля Эйнштейна, получить абсолютно точное решение для кривизны пространства-времени снаружи любой сферической, не вращающейся звезды. Его вычисления были элегантны, уравнения красивы, а форма пространства-времени, которую они описывали, получившая вскоре название шварцшилъдовской геометрии, оказала колоссальное влияние на понимание гравитации и устройства Вселенной.
Шварцшильд послал Эйнштейну свою статью, содержащую эти расчеты, и Эйнштейн представил ее на собрании Прусской академии наук в Берлине 13 января 1916 г., а через несколько недель представил и вторую его статью, в которой было получено точное решение для кривизны пространства-времени внутри звезд. Увы, всего через четыре месяца научная карьера Шварцшильда трагически оборвалась: он умер от болезни, полученной на фронте, о чем Эйнштейн сообщил академии 19 июня.
* * *
Шварцшильдовская геометрия — это первый конкретный пример искривленного пространства-времени, с которым мы встречаемся в этой книге. По этой причине, а также потому, что именно с ее помощью можно определить свойства черных дыр, мы рассмотрим ее подробно.
Карл Шварцшильд в своей мантии в Геттингене (Германия). [Предоставлено Визуальным архивом Эмилио Сегре Американского института физики]
Если бы мы в своей повседневной жизни представляли себе пространство и время как единый, абсолютный, четырехмерный континуум, было бы вполне логично описывать шварцшильдовскую геометрию на языке искривленного четырехмерного пространства-времени. Однако мы привыкли иметь дело по отдельности с
Поскольку пространство и время относительны (если мы движемся относительно друг друга, то мои пространство и время будут отличаться от ваших [59] ), для такого разделения требуется определить систему отсчета. Для звезды будет естественно выбрать такую систему отсчета, в которой эта звезда покоится; назовем ее собственной системой отсчета этой звезды. Другими словами, разумнее вначале рассмотреть собственные пространство и время этой звезды.
В качестве способа визуализации искривления пространства звезды я буду использовать рисунок, называемый вложенной диаграммой. Поскольку вложенные диаграммы будут играть важную роль в последующих главах, я подробно, с использованием аналогий, объясню, что это такое.
59
Рисунок 1.3 и притча о Мледине и Сероне из главы 2.
Представьте себе семью человекоподобных созданий, живущих во вселенной, имеющей всего два пространственных измерения. Пусть их вселенная искривлена (имеет вид поверхности с чашеобразной впадиной; см. рис. 3.2). Сами создания также двумерны; их размер в направлении, перпендикулярном поверхности, будем считать бесконечно малым. Кроме того, они не могут выглянуть из этой поверхности: световые лучи в их вселенной распространяются строго в пределах поверхности и никогда не покидают ее. У этих «плоскатиков», как я буду их называть, нет никакого способа узнать о том, что происходит вне их двумерного мира.
Плоскатики могут изучать геометрию своей вселенной, исследуя прямые линии, треугольники и окружности. Их прямые — это геодезические, о которых говорилось в главе 2 (рис. 2.4 и соответствующие пояснения): самые прямые линии, которые существуют в этом двумерном мире. На дне впадины, которое на рис. 3.2 имеет форму сферического сегмента, эти прямые линии являются частями больших кругов, подобно земному экватору или параллелям. Вдали же от впадины эта вселенная плоская, и прямые линии представляют собой прямые в нашем обычном понимании.
3.2. Двумерная вселенная, населенная «плоскатиками»
Если плоскатики рассмотрят любую пару параллельных прямых в этой плоской части вселенной (например, II и 12 на рис. 3.2), они обнаружат, что эти линии никогда не пересекаются. Таким образом, они могут убедиться, что эта часть их пространства действительно плоская. С другой стороны, если они построят параллельные линии L3 и L4 вдали от впадины, а затем продлят их до нее, стараясь сохранять их прямыми, насколько это возможно (так, чтобы они оставались геодезическими), они увидят, что на дне впадины эти линии пересекаются. Отсюда они могут заключить, что эта область пространства искривленная.
Плоскатики могут также проверить то, что область вдали от впадины плоская, и измерить кривизну пространства внутри впадины при помощи окружностей и треугольников. В плоской области длина любой окружности равна числу я (3,14159265), умноженному на ее диаметр. Во впадине длины окружностей будут меньше, например, длина большого круга вблизи ее дна, изображенного на рис. 3.2, равна двум с половиной диаметрам. Если плоскатики построят треугольник, стороны которого — прямые линии (геодезические), и вычислят сумму его внутренних углов, они получат 180° для треугольников в плоской области и больше, чем 180°, если треугольник находится в искривленной части вселенной.