Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем
Шрифт:
Полученные таким способом клетки называются индуцированными плюрипотентными стволовыми клетками (iPS-клетки). Плюрипотентность означает теоретическую способность стволовых клеток развиваться в любую соматическую клетку. А индуцированные они потому, что эмбрионоподобное состояние вызвано искусственным путем. Идентичность их эпигенома с эпигеномом настоящей эмбриональной стволовой клетки и их одинаковый потенциал были доказаны Мариусом Вернигом, Алексом Майсснером и другими сотрудниками бостонской группы исследователей под руководством Рудольфа Йениша. Они сравнили метилирование ДНК, гистоновый код и модели активации генов iPS-клеток мыши с эпигенетическими переключателями в настоящих эмбриональных стволовых
Не клонирование, а «перепрограммирование клеток — единственный реальный на сегодняшний день вариант», как сказал мне Рудольф Йениш в 2008 году, когда мы встретились на Международном конгрессе генетиков в Берлине. Там же он представлял новые захватывающие эксперименты своей лаборатории, в рамках которых плюрипотентные клетки мыши использовались уже для лечения больных животных. Его вывод: «Теперь мы знаем, что лечение стволовыми клетками принципиально возможно».
Во время эксперимента, который проводила группа под руководством Мариуса Вернига, ученые добились, чтобы iPS-клетки начали дифференцироваться как клетки головного мозга. Затем исследователи пересадили эти клетки в мозг мышат. Там ткани действительно превратились в клетки различных типов и функционально встроились в орган. Некоторые образцы исследователи оставили в пробирке и вырастили до тех вырабатывающих дофамин клеток, которые в большом количестве отмирают у страдающих болезнью Паркинсона. Полученные клетки они пересадили в мозг пяти крысам с этой болезнью. Состояние четырех животных заметно улучшилось в течение нескольких недель.
В другом случае исследователи из группы под руководством Якоба Ханны проводили эксперимент на мышах с серповидно-клеточной анемией. Это заболевание состоит в том, что один дефектный ген вызывает повреждение красных кровяных телец. Сначала ученые взяли несколько клеток из мышиных хвостов и перепрограммировали их в iPS-клетки. В них они заменили дефектный ген на нормальный и дифференцировали эти клетки в клетки — предшественники крови. Получившийся материал снова пересадили животным в костный мозг, который до этого был максимально разрушен облучением, чтобы клетки там размножились и синтезировали здоровые кровяные тельца. Это не привело к молниеносному выздоровлению мышей, поскольку у них по-прежнему оставалось несколько стволовых клеток крови с дефектным геном, но их состояние заметно улучшилось. «Теоретически мы могли бы лечить этим методом все возможные виды заболеваний костного мозга», — считает Рудольф Йениш.
Весной 2009 года наметилась возможность опробовать этот метод на людях. Одновременно несколько исследовательских групп в течение нескольких недель представили различные методы, позволяющие решить самую большую на тот момент проблему iPS-клеток. Ибо те четыре гена, которые специалистам по стволовым клеткам приходится внедрять для перепрограммирования клетки, часто вызывают рак. Поэтому во всем мире исследователи лихорадочно искали новые способы возвращать клетки в плюрипотентное состояние без этих четырех генов.
Сначала исследователи стволовых клеток Чонпон Ким и Ханс Шёлер из Института молекулярной биомедицины Общества Макса Планка (Мюнстер) объявили в своей публикации, что могут вернуть взрослые стволовые клетки в эмбриональную фазу с помощью всего одного гена. Затем последовала публикация Франка Зольднера и Рудольфа Йениша, сообщающая о методе, который позволяет получать iPS-клетки почти без всяких посторонних генов. Бостонские исследователи по-прежнему использовали вирус, но после перепрограммирования почти полностью удалили его гены. Примерно в это же время аналогичным путем пошли Кнут Волтьен и его коллеги из Торонто — и получили сопоставимые
Некоторое время спустя еще один метод опубликовал Цзюньин Юй из группы Джеймса Томсона — того американского ученого, который когда-то самым первым вырастил эмбриональные стволовые клетки человека. Ученые вводили в клетку гены вируса в такой жизненной форме, которая не встраивается в человеческую ДНК и поэтому иногда сама исчезает при последующих клеточных делениях. Нужно только потом изолировать эти клетки.
Еще за полгода до того, как были обнародованы эти потрясающие достижения, Рудольф Йениш считал: «Проблема перепрограммирования в принципе решена». Предполагалось, что в ближайшее время процесс будет освоен настолько хорошо, что соответствующие клетки тела можно будет превращать в стволовые и без помощи генной инженерии, а лишь посредством введения извне комплекса различных веществ, которые вызовут необходимые эпигенетические переключения. Затем нужно будет только определить, каким образом, в каком направлении и до какой степени оптимально дифференцировать стволовые клетки перед пересадкой в тело пациента, чтобы шансы на выздоровление были максимальными, а риск развития рака — минимальным.
Над этим, конечно, трудятся эпигенетики: они выясняют, какие переключатели использует клетка в процессе своего развития. Таким образом исследователи помогут специалистам по стволовым клеткам, и те найдут правильные точки приложения для целенаправленных манипуляций с клетками, поскольку на сегодняшний день не так уж просто дифференцировать стволовую клетку в желаемую форму, например в частичку нервной ткани или мышцы миокарда.
Вполне вероятно, что лечение стволовыми клетками благодаря эпигенетике когда-то станет вовсе не нужным. Если ученые освоят переключение эпигенетической программы одной дифференцированной клетки непосредственно на программу другой, они смогут превращать, например, клетку кожи в частичку нервной ткани, а клетку яичек — в синтезирующую инсулин клетку поджелудочной железы и так далее.
С клетками мыши это уже в определенной степени удалось. Пока это получится с человеком и со всеми типами его тканей, пройдет немало времени. Но тем самым будет окончательно проложен путь в обход стволовых клеток.
Модификация второго кода — медицина будущего?
Ведущий научный журнал США «Сайенс» ежегодно в конце декабря называет «Открытия года». Это список десяти важнейших научных достижений, которые, по мнению очень квалифицированной редакции, определили прошедший год и дают самые многообещающие импульсы для будущего развития.
В 2007 году на втором месте оказалось создание человеческих iPS-клеток. В 2008 году на вершину списка выдвинулась вся область, занимающаяся перепрограммированием клеток. Редакция так обосновала свой выбор: поскольку биологи открыли, как можно перевести назад биологические часы клетки, они сильно продвинулись в понимании болезней, а также способов, какими клетки определяют свою биологическую судьбу. И действительно, целенаправленная модификация второго кода может в будущем радикально изменить медицину.
При этом наблюдаются два параллельных направления развития. С одной стороны, ученые исследуют, каким образом эпигеномы клеток можно расшифровывать, интерпретировать и модифицировать с помощью фармакологического воздействия. Это может способствовать развитию диагностики и лечению многих болезней. С другой стороны, они всё лучше понимают, каким образом, в какие периоды и с какими долговременными последствиями окружающая среда вступает во взаимодействие с геномом. Это создает совершенно новые отправные точки для эффективных профилактических программ, а каждому человеку дает шанс самостоятельно определять свою биологическую судьбу или судьбу своих детей.