Что может биотехнология?
Шрифт:
«Джинентек» в 1978 г. объявил о своем успехе. Газеты тогда пестрели заголовками типа «золотая плазмида» и тому подобными. Сотрудник «Джинентека» А. Улрих работал в такой же лаборатории, что Гилберт, но во Франции. Ему удалось клонировать ген инсулина, но комитет по рекомбинантным ДНК Национального института здравоохранения США не разрешил Бойеру пользоваться era плазмидрй, в результате чего пришлось клоны разрушить. Но спустя месяц. разрешение на использование плазмид пришло — оказалось, что страхи по поводу рекомбинантных ДНК надуманы и сильно преувеличены. Улриху пришлось начинать все заново. Хорошо, что опыт был уже отработан, поэтому восстановление клонов прошло быстро.
Гилберт же переключился
Когда 14 октября 1980 г. сообщение о награждении троих ученых пришло на Уолл-стрит, цена акций «Джинентек» подскочила с 32 до 88 долларов! Так биржа среагировала на выдачу «свидетельства» о рождении биотехнологии. Компания «Джинентек» в рекламных целях предоставила биотехнологическии человеческий инсулин для лечения С. Атертона из городка Дерби в штате Канзас. Он получил диабет от своего отца по наследству — тот тоже тридцать лет страдал от отсутствия в его организме жизненно важного гормона. САтертон заявил корреспондентам: «Я очень рад прогрессу в науке».
В это же время американцы уже сумели прибрать к рукам еще одно английское открытие. Журнал «Нейчер» сообщил о нем в своем номере в 1975 г. Оно было написано скромным аспирантом из ФРГ Г. Келлером, который работал у Ц. Мильштейна в кембриджской Лаборатории молекулярной биологии. В своей статье он вместе с шефом сообщал о новом способе получения иммунных белковых антител «повышенной специфичности». Сегодня весь мир знает эти антитела как «моноклональные».
Молекулу антитела схематически можно представить в виде меленькой вилочки или пинцетика. Обычно иммунная система вырабатывает разные виды антител, потому что в иммунном ответе участвует много клеток. После войны австралиец Макферлейн Барнет, который писал в 1943 г., что в лаборатории Эйвери выделен ген, задался вопросом: а сколько клеток необходимо для выработки ответа в виде антител при наличии одного-единственного антигена (напомним, что антигеном называется вещество, или молекула, или ее часть, в ответ на которые вырабатываются специфические антитела).
Ответ поначалу казался несколько обескураживающим: в организме существуют клетки, которые уже как бы «настроены» на любой мыслимый антиген (даже которого не было в природе, как это имеет место при синтезе человеком новых веществ). При попадании антигена в организм, он встречается с антителосинтезирующей клеткой, которая начинает размножаться и дает клон. Таким образом, антиген служит как бы «селекционером» клонов. Теория получила название клонально-селекционной, и за ее создание Барнет, был удостоен Нобелевской премии в 1960 г.
Дальнейшее развитие клонально-селекционная теория получила в работах датского иммунолога Н. Ерне. Проверкой одной из гипотез Ерне как раз и поручил заняться Г. Келлеру и С. Мильштейну, в результате чего удалось слить антителосинтезирующую клетку с опухолевой. Поскольку соединение чего-то разного называется гибридом, а к названию всех опухолей прибавляют окончание «-ома», то такие «сложные» клетки стали называть гибридомами.
Гибридомы уникальны в двух отношениях: они бессмертны как и все опухолевые клетки, но в то же время они производят антитела только одного «клона». И поскольку «один» по гречески «монос», то новые высокой специфичности антитела стали называть «моноклональными антителами» (МАТ).
Ничто сегодня не может сравниться по чувствительности с МАТ. МАТ распознают не только отдельные молекулы, например, белков, но даже замены отдельных аминокислот в белках. Именно с помощью МАТ удалось доказать, что в раковом белке происходит моноаминокислотная замена, приводящая к таким катастрофическим для клетки и организма последствиям.
Поначалу, к сожалению, англичане, вернее их чиновники от науки, не поняли, какой подарок им преподнесла судьба в виде открытия Келлера и Мильштейна. Движимые исследовательским интересом и отчаявшись что-либо добиться от чинуш, ученые передали гибридомы американцам. И только тогда, когда Келлеру, Мильштейну и Ерне в 1984 г. присудили Нобелевскую премию по медицине, в высших эшелонах власти на Уайтхолле появились некоторые признаки движения. Вернее, признаки появились несколько раньше, но было уже поздно: американцы все к тому времени успели запатентовать и разрекламировать. Например, случай с 21-летней Ш. Гаспер, которой пересадили почку и которая успешно — с пересаженной почкой! — родила девочку. И все это благодаря работе МАТ против иммунных клеток, ответственных в нашем организме за отторжение пересаженных органов и тканей. МАТ их реакцию подавили. Пришлось и англичанам подавить свою гордость и согласиться на строительство в Шотландии американского завода по производству моноклональных антител.
Сейчас уже не перечесть всех биотехнологических продуктов, которые появились на американском рынке. Это инсулин и интерферон, интерлейкины и опухоленекротизирующий фактор, с помощью которых пытаются лечить рак, активатор тканевого-плазминогена, хорошо помогающий при инфарктах. Достаточно сказать, что в настоящее время картировано более шестисот генов, то есть точно определено их положение в хромосомах. Это все впечатляющие успехи, рассказ о которых занял бы очень много места, тем более что каждый успех достигался в поисках, очень похожих на детективные истории.
Успешное выделение и «прочтение». генов, получение биотехнологическим способом кодируемых им белков, картирование генов привело в конечном итоге к рождению одного из грандиознейших проектов конца X в. «Геном человека»! Для этой цели была создана специальная Организация по расшифровке человеческого генома, английская аббревиатура названия которой пишется и звучит как имя знаменитого французского писателя — ГЮГО.
Планы по разработке проекта впервые появились в 1986 г., когда в калифорнийском городе Санта-Фе в марте прошла первая конференция, посвященная этому вопросу. Конференция проводилась под эгидой Министерства энергетики США. Его отдел по исследованиям окружающей среды желает иметь точную оценку влияния радиации на геном человека. Кроме того — так уж исторически сложилось, — вся генетическая информация хранится в больших компьютерах министерской лаборатории в Лос-Аламосе, где делали в свое время первую атомную бомбу, а сейчас ведутся работы по СОИ и созданию рентгеновского лазера. Без больших же компьютеров в чтении генома человека не обойтись, поскольку информация в этой области накапливается лавинообразно.
Достаточно сказать, что на конец 1989 г. «прочитано» более 30 миллионов нуклеотидов, или «букв» генетических текстов. Расшифрована также последовательность примерно полутысячи генов, кодирующих конкретные белки, некоторые из которых уже производятся биотехнологически и продаются в аптеках. 30 миллионов, конечно, очень мало по сравнению с тремя миллиардами букв, содержащихся в нашем полном «тексте». Вообразить себе подобное число просто невозможно, поэтому необходим какой-то простой и понятный пример.