Что такое полупроводник
Шрифт:
Поясним это на простой аналогии. Представьте, что у вас в руках игрушечное ружье с пружиной. Чтобы зарядить ружье, вы сжимаете пружину, а перед выстрелом — отпускаете ее, чуть тронув спусковой крючок. Так вот: атомы, о которых мы говорили, как бы заряжаются под воздействием света. А когда мы слегка тронем их электрическим полем, они разряжаются и словно стреляют светом.
Возможно, в наших городах вскоре появятся чудесные светильники. Днем они будут собирать световую энергию, а вечером и ночью по слабой электрической команде сиять за счет накопленного света.
Сообщалось, что в Чехословакии разрабатываются светильники в виде щитов, на которых под электрическим воздействием сверятся порошки из особых полупроводниковых материалов. Белого
Комнаты со светящимися обоями, с потолками, излучающими мягкое сияние, — быть может, через несколько лет это станет столь же обычным, как в наши дни лампочка накаливания.
Есть еще много других интересных оптических свойств полупроводников. Они способны, например, превращать невидимые ультрафиолетовые лучи в видимые. На этом основаны знакомые каждому люминесцентные лампы — те самые, что заливают мягким светом станции метро, художественные выставки, залы магазинов, цехи заводов. Некоторые полупроводники отзываются световыми вспышками на обстрел мельчайшими частицами радиоактивных излучений. Это свойство используется при создании особых {103} счетчиков ядерных частиц. На экранах телевизоров тоже светится полупроводниковый люминофор. Его «зажигают» удары электронов.
Не так давно физики научились делать «вечные» светящиеся указатели. Их не нужно включать в электросеть, присоединять к батарее. Они светят сами — без всяких посторонних источников энергии. В таком указателе слой полупроводникового люминофора светится под воздействием быстро летящих электронов, которые выбрасываются ядрами атомов радиоактивного изотопа стронция. Срок службы указателей — более двадцати лет.
Если поставить подобные светильники, скажем, на речных бакенах, то бакенщику не придется каждый день зажигать фонари. Он будет менять их всего два — три раза в жизни.
{104}
ЭЛЕКТРОНИКА В КРИСТАЛЛАХ
{105}
НЕУДАЧЛИВЫЙ ПОКУПАТЕЛЬ
Директор одного радиомагазина — ветеран торговли радиоприемниками — рассказывал:
— Вот уж лет тридцать регулярно ходит к ' нам странный старичок-покупатель. Думаете, много он за это время накупил? Ничего! И деньги, видно, припас, и желание есть, да вот беда: слишком быстро бежит вперед техника. Сперва он, помнится, хотел приобрести детекторный приемник. Но, поговорив с продавцом, узнал, что скоро поступят в продажу ламповые, и решил подождать. Появились первые ламповые приемники. Снова пришел этот покупатель, но не купил ничего: узнал о другой ожидающейся новинке — многоламповых супергетеродинах. Потом и супергетеродины стали не в редкость. Но чудак-покупатель опять уходил ни с чем из магазина. Он до сих пор ждет нового. И ведь не зря ждет! Каждый год аппаратура становится совершеннее, экономичнее, надежнее. Только никогда не дождется этот наивный человек самого лучшего приемника — такого, чтобы не устарел за год-другой.
Гениальное создание Александра Степановича Попова — радио — за последние десятилетия получило {107} невиданное развитие. Но еще больший, сейчас даже трудно постижимый прогресс ожидает его в будущем. Этот прогресс — детище золотых рук и светлого ума людей, которые не ждут пассивно нового, а сами творят его. И замечательными помощниками человека здесь тоже оказываются полупроводниковые материалы.
ПЕРВЫЙ ШАГ
Детекторный радиоприемник.
Обычный
С чего начинает юный радиолюбитель? С детекторного приемника. Предельно прост этот удивительный аппарат. Проволочная катушка, невзрачный камешек детектора, наушники. Вот и вся премудрость. А какая сказочная сила воплощена в соединении нехитрых деталей! Расспросите людей старшего поколения, которые своими руками делали первые детекторные приемники. Они скажут: пожалуй, в наши дни новенький телевизор вызывает меньше радости, чем те деревянные ящички.
Вот собранный приемник торжественно водружен на столе. Его создатель залезает на крышу и протягивает длинную, метров в тридцать — сорок, антенну. Идущий от нее провод он подключает к приемнику {108} и некоторое время возится с детектором. Упираясь концом упругой пружинки в серебристый кристаллик, помещенный в стеклянной трубочке, надо нащупать на нем чувствительную точку. И как только это удается, совершается долгожданное «волшебство»: в наушниках звучит музыка или речь.
Кристаллик детектора — это, пожалуй, самый первый полупроводник, нашедший широкое практическое применение. Зачем он нужен?
Радиоволны возбуждают в антенне электрическое поле, быстро меняющее направление. Электрическое поле приводит в движение электроны провода. Они летят в проводе то вперед, то назад. Сотни тысяч раз в секунду происходят такие колебания электронов. Чтобы услышать передачу, нужно словно рассечь пополам эти колебания, пропустить в наушники только те движения электронов, которые направлены в одну сторону. В этом случае переменный ток, как говорят, выпрямляется, превращается в пульсирующий постоянный ток. А в сравнительно медленных изменениях его силы (сотни и тысячи колебаний в секунду) как раз и запечатлены передаваемые звуки. Больше сила выпрямленного тока — значит, сильнее оттягивается электромагнитом стальная мембрана наушника. Слабеет ток — и она отходит от электромагнита. Мембрана вибрирует, передает свои колебания воздуху, и вокруг разносятся звуковые волны.
Такова вкратце сущность действия наипростейшего радиоприемника. Как видим, кроме проводов, здесь требуется всего два устройства: наушники и выпрямитель тока. Детектор и выполняет роль выпрямителя.
{109}
ДЕТЕКТОР РАБОТАЕТ
Кристаллик, который находится в стеклянной трубочке, — полупроводник. Электропроводность его, как мы хорошо уяснили раньше, может быть либо электронной, либо дырочной. Допустим, он наделен электронной проводимостью. Но кристаллик неоднороден. На поверхности его попадаются участки, в той или иной степени засоренные примесями. Есть среди них и такие места, где под влиянием примесей электронный полупроводник превратился в дырочный. А на границе электронной и дырочной областей обязательно возникает знакомый нам запирающий слой — зона, в которой нет ни электронов, ни дырок.
Напомним особенность этого слоя: с одной его стороны как бы стоят на страже электроны-«пограничники». Они отталкивают все свободные электроны в глубь электронной области. По другую сторону границы стоит такая же стража дырок. Они, как вы помните, отталкивают другие дырки в глубь дырочной области. Словом, в запирающем слое возникает пограничное электрическое поле. Оно противодействует продвижению электронов и дырок к границе соприкосновения электронной и дырочной областей полупроводника.
К запирающему слою подведем внешнее электрическое поле. В зависимости от направления оно либо добавит свою силу к силе пограничной стражи в полупроводнике (расширит запирающий слой), либо, наоборот, ослабит и даже сметет прочь электроны и дырки-«пограничники».