Что такое полупроводник
Шрифт:
Сигналы можно усиливать многократно в нескольких лампах подряд. Да и не только усиливать. Радиолампы с двумя электродами (без сетки) выпрямляют переменные токи — играют роль детекторов. Радиолампы, снабженные дополнительными электродами, исключительно тонко управляют потоками электронов. Наконец, в этих приборах нетрудно возбуждать разнообразные электрические колебания.
ТРИУМФ И КРИЗИС
В руках ученых и инженеров радиолампа стала мощным средством технического прогресса. Непрерывно совершенствуясь, за несколько лет она завоевала всю радиотехнику. Благодаря ей развилось телевидение,
Казалось, и будущее радиотехники неразрывно связано с радиолампами. Однако прошли десятилетия, и постепенно выяснилось, что радиолампы не так уж безупречны.
На полярной зимовке радист терял с трудом налаженную связь — «садилась» очередная лампа. Летчик неудачно приземлял самолет — лампы бортовой радиостанции не выдерживали встряски и портились. В подавляющем большинстве случаев любой радиоаппарат выходил из строя из-за недолговечности ламп. Срок их службы, исчисляющийся сотнями и тысячами часов, перестал удовлетворять технику. И мало-помалу они приобрели репутацию самых ненадежных, капризных элементов радиосистемы.
Потом и размеры радиоламп оказались слишком большими. Ведь не одну сотню, даже не одну тысячу их насчитывают иные современные радиоаппараты. Нелегко {116} конструктору компоновать это оборудование так, чтобы оно не занимало слишком много места.
Все это заставило радиоинженеров всерьёз подумать о замене радиоламп какими-то другими — компактными и надежными приборами.
Начались поиски новых решений.
ЗАЧЕМ НУЖНА ПУСТОТА?
Любой ламповый радиоприемник, рассуждали ученые, сочетает в себе трудно совместимые конструкционные элементы: твердые тела и... пустоту. Провода, конденсаторы, катушки, сопротивления — все это твердое, все это можно закрепить, сделать прочно, надолго. А радиолампы? Чтобы увеличить стойкость, баллоны ламп выполняют из металла, из специальных пластмасс, керамики. Это, конечно, помогает. Однако главное неудобство — пустота — остается. В ней приходится монтировать сложные электроды, разогревать нить катода. Все там нежное, тонкое, боящееся толчков, тряски.
Казалось бы, пустота незаменима. В ней электронные потоки словно обнажаются, становятся доступными регулировке, попадают во власть слабого электрического поля сетки радиолампы.
Впрочем, только ли в пустоте можно управлять движением электронов?
Что, если попробовать вместо пустоты полупроводниковый кристалл? Надо, очевидно, пропускать через него ток и извне менять электропроводность кристалла. Но каким способом менять ее? Можно ли вообще этого добиться?
От решения этих вопросов зависела судьба всего дальнейшего развития радиотехники.
Так на новой основе возродилась идея О. В. Лосева об усилителях и генераторах на кристаллах. {117}
Конечно, многое в ней изменилось. Применять для такой цели обычные детекторы стало нецелесообразно. Эффект они давали небольшой. Речь шла о создании кристаллического прибора, способного уверенно соперничать с современной радиолампой.
Не сразу нащупали путь решения проблемы. Много было досадных неудач, срывов, сомнений. Но в конце концов ответ был найден: да, проводимостью кристалла можно управлять, можно создать полупроводниковый прибор — заменитель радиолампы. Теорию прибора разработал американский физик Вильям Шокли. Его соотечественники Бардин и Браттейн создали в 1948 году первые образцы приборов, названных кристаллическими триодамиили транзисторами.
Как они устроены? Об этом мы расскажем немного дальше. Прежде — несколько слов о материале, из которого они изготовляются.
ПРЕДСКАЗАННОЕ ВЕЩЕСТВО
Делают кристаллические триоды главным образом из полупроводника германия. Мы уже упоминали о применениях этого вещества, сыгравшего огромную роль в развитии физики и техники полупроводников. С ним связана и другая интереснейшая страница истории естествознания.
Кристаллический элемент германий — важнейший полупроводник. Впереди — монокристалл германия.
В 1869 году, когда Дмитрий Иванович Менделеев создавал свою знаменитую периодическую систему, о существовании германия никто не подозревал. Но гениальный химик по чисто теоретическим соображениям предсказал его открытие. Ученый отвел ему место в своей многоэтажной таблице и даже описал заранее, какими могут быть его основные свойства. Согласно периодическому закону, это неведомое в ту пору вещество должно было во многом походить на известный элемент кремний. Менделеев {118} поэтому присвоил ему условное название экасилиций (силиций — латинское название кремния, а приставка «эка» на санскритском языке означает «сходный»).
Спустя шестнадцать лет замечательное предвидение сбылось. Немецкий исследователь Винклер отыскал в одном из природных минералов экасилиций и дал ему имя своей родины. То был подлинный триумф научной мысли.
«Едва ли, — писал Винклер, — можно найти более поразительное доказательство справедливости учения о периодичности... Это не просто подтверждение смелой теории; здесь мы видим... мощный шаг в области познания».
Практического применения вновь открытый элемент сначала почти не получил. Долгое время его серебристо-серые блестящие кристаллы служили лишь уникальными экспонатами в химических коллекциях. Зато за последние годы германий стал важнейшим техническим материалом. И венца славы он достиг, как только стал основой кристаллических приборов — заменителей радиоламп.
ПОЛУПРОВОДНИК-УСИЛИТЕЛЬ
Вот он перед нами — германиевый триод, кристаллик, идущий на смену пустоте, на смену стеклянному пузырю радиолампы. Он похож на крошечный, величиной с горошинку, грибок. Из шляпки тянутся три проволочки.
Полупроводниковые триоды. Насколько они меньше радиолампы!
Вскройте его, и вы убедитесь, что даже в сталь миниатюрном устройстве подавляющая часть объема занята {119} корпусом, оболочкой. А сам кристалл еще в десятки раз меньше.