Чтение онлайн

на главную - закладки

Жанры

Что вы знаете о своей наследственности?

Лушанова Галина Ивановна

Шрифт:

Генетический код, открытый в 1961—1964 годах, оказался именно триплетным, то есть три нуклеотида в строго определенной последовательности кодируют свою аминокислоту в белке при его создании на специальной матрице — информационной РНК. Триплет — это не просто случайная группировка из трех нуклеотидов: каждый триплет определяет (кодирует) включение только своей аминокислоты. Установлено, что восемь аминокислот могут быть закодированы в среднем двумя разными триплетами, пять аминокислот — четырьмя, а три аминокислоты — аргинин, серин и лейцин — даже шестью триплетами, и только две аминокислоты имеют по одному кодирующему триплету (рис. 4).

Рис. 4. Словарь генетического кода.

Способность кодировать (устанавливать на определенное место) одну и ту же аминокислоту разными триплетами получила название вырожденности генетического кода. Благодаря последней природе удается как бы снять шумы (возможные ошибки), возникающие при работе генетического материала, особенно при его удвоении.

Из-за вырожденности (повторенности) генетического кода не каждое изменение оснований в триплетах может отражаться на последовательности и наборе аминокислот в белке, то есть изменять генетический смысл. Явление вырожденности генетического кода снижает частоту возможных спонтанных (естественных) и экспериментальных изменений (мутаций) на 24,5 %. Наличие вырожденности генетического кода является, можно сказать, непреодолимым барьером на пути получения наследственных изменений определенных признаков (локусов) по многим генам.

Генетический код — удивительно универсальное явление, присущее всем известным организмам от бактериофагов до человека. Это подтверждает общность (из одного источника) происхождения всего живого, в том числе и человека.

Деление клетки

При рассмотрении клетки в обычный световой микроскоп видно, что границы ее, благодаря наличию оболочки, четко очерчены. Часто в клетках заметно ядро (рис. 5, 6), также имеющее оболочку. В некоторых клетках ядра не видно, но различаются структуры, названные хромосомами. Основной структурный материал хромосом (90 % массы) — дезоксирибонуклеопротеид (ДНП), то есть комплекс, состоящий из белка и ДНК. Отдельные участки хромосом, ответственные за проявление определенных признаков, называются генами.

Рис. 5. Внешний вид клетки.

Хромосомы есть во всех клетках без исключения. Однако наблюдать их с помощью микроскопа можно только в том случае, если они сжаты, спирализованы, плотно упакованы. В период деления клетки ядерная оболочка растворяется, а хромосомы укладываются в спираль, хорошо окрашиваются специальными красителями и становятся видимыми в световой микроскоп. Далее хромосомы располагаются по экватору клетки, делятся и расходятся к разным полюсам. Делится и цитоплазма. Хромосомы вновь деспирализуются (раскручиваются) и образуют ядерную оболочку. Так из одной материнской клетки образуются две дочерние, совершенно одинаковые. Интересно, что количество ДНК в новых клетках не уменьшается, а остается прежним, так как до начала деления происходит его удвоение (репликация). Такое удвоение получило название митоза.

Рис. 6. Внутреннее строение клетки (схема).

Хромосомы в клетках обнаружены учеными давно, однако только в 1902—1935 годах Томасом Г. Морганом и представителями его школы сформулирована хромосомная теория наследственности. Известно, что у одного и того же вида животных и растений количество хромосом одинаково во всех клетках (кроме половых), у разных же видов — различно. Так, у мыши их 40, крысы — 42, лисицы — 34, свиньи — 38, кролика — 44, человекообразной обезьяны — 48, осла — 62, лошади—64, дрозофилы — 8. Только в 1956 году было точно установлено, что у человека в клетках содержится 46 хромосом — 44 аутосомы и 2 половые хромосомы, а до этого времени считалось, что их 48, как и у обезьяны. Точный анализ хромосом удалось провести благодаря тому, что наука обогатилась новыми методами приготовления препаратов.

Уже в 1959 году была выявлена хромосомная аномалия у человека — так называемый синдром Клайнфельтера. Эта болезнь была описана врачом еще в 1942 году. Ее характерные признаки: высокий рост, гинекомастия, атрофия яичек, мягкая форма дебильности и др. Причина появления этого синдрома — наличие лишней Х-хромосомы в генотипе больного (44 + + XXY). Интересно, что в 1949 году М. Барр обнаружил в ядре неделящейся клетки присутствие интенсивно красящегося объекта, который был назван именем ученого — тельцем Барра (половой хроматин). Последнее присутствует только в клетках женщин и отсутствует в клетках здоровых мужчин. Позднее было установлено, что при наличии двух Х-хромосом в клетке одна из них находится в плотно сжатом состоянии, образуя тельце Барра. У мужчин с синдромом Клайнфельтера в ядрах клеток также присутствует тельце Барра.

В каждой клетке организма человека или животного имеются две хромосомы одного размера и одинаковой формы. Одна из них (гомологичная) получена or отца, другая — от матери. Чтобы число хромосом не возрастало от одного поколения к другому, в половых клетках (гаметах) их должно быть вдвое меньше, чем в зиготе (оплодотворенной яйцеклетке). Уменьшение же числа хромосом вдвое происходит в результате особого клеточного деления — мейоза, наблюдающегося при образовании гамет. При мейозе каждая из хромосом удваивается, гомологичные хромосомы сближаются, образуя пары. Этот процесс носит название конъюгации хромосом. Хромосомы вытягиваются (деспирализуются), что обеспечивает тесное сближение их отдельных участков. При этом в некоторых местах происходит перекручивание хромосом, составляющих пару. Затем, вследствие спирализации, конъюгирующие хромосомы укорачиваются, располагаются по экватору клетки и в анафазе (стадии деления ядра) сближенные ранее гомологичные удвоенные хромосомы расходятся к разным полюсам.

Таким образом, к каждому полюсу отходит лишь одна из парных гомологичных хромосом. Обычно вслед за этим сразу начинается второе деление. Однако у человека в отличие от животных и растений эти два деления в значительной степени разделены во времени: первое редукционное деление хромосом (уменьшительное) плода происходит в период 3—6 месяцев внутриутробного развития, второе — спустя 10—12 лет (а последней половой клетки — примерно через 40 лет).

Итак, в отличие от обычного деления (митоза) в мейозе ядро делится на два ядра, а хромосомы удваиваются один раз. В результате этих делений из одной клетки образуется четыре, число хромосом в которых уменьшается вдвое. Новые клетки содержат не двойной (диплоидный — 2п), а одинарный (гаплоидный — 1n) набор хромосом (рис. 7). При слиянии двух гаплоидных гамет в зиготе диплоидный набор хромосом восстанавливается.

Сколько отцовских и сколько материнских хромосом получит каждая зигота? Это очень важно, так как оказывается, что хромосомы, полученные от отца и матери, рекомбинируются (обмениваются участками) в процессе мейоза совершенно свободно. При расхождении гомологичных хромосом к одному полюсу могут отойти две материнские, к другому — две отцовские. Однако с равной вероятностью могут состояться и другие комбинации — например, к каждому полюсу отойдут одна материнская и одна отцовская хромосомы. А если у человека 23 пары хромосом, то сколько же разнообразнейших комбинаций может возникнуть в гаметах? И каждый участок хромосомы (ген) оказывает специфическое влияние на развитие наследственных признаков организма. Таким образом, именно мейоз обеспечивает возникновение огромного разнообразия сочетания признаков родителей и потомков.

Рис. 7. Мейоз и образование сперматозоидов (а) и яйцеклетки (б) у человека (схема).

Это разнообразие увеличивается еще и тем, что в процессе конъюгации гомологичные хромосомы обмениваются участками, наследственные особенности которых не всегда одинаковы. Первоначальное предположение о каком-то определенном расположении генов в хромосомах возникло тогда, когда на модельных объектах было установлено, что некоторые признаки, обусловленные генами, наследуются связанно друг с другом. Тенденцию признаков наследоваться совместно, а не порознь назвали сцеплением. Групп сцепления столько, сколько пар хромосом у конкретного вида. Ученые, тщательно изучив закономерности появления различных признаков при гибридизации у животных и растений, обнаружили, что сцепление признаков характерно как для животных (в том числе человека), так и для растений.

Популярные книги

Последний реанорец. Том IV

Павлов Вел
3. Высшая Речь
Фантастика:
фэнтези
5.20
рейтинг книги
Последний реанорец. Том IV

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Утопающий во лжи 2

Жуковский Лев
2. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 2

Защитник

Кораблев Родион
11. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Защитник

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Хозяйка усадьбы, или Графиня поневоле

Рамис Кира
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Хозяйка усадьбы, или Графиня поневоле

Замыкающие

Макушева Магда
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Замыкающие

Измена. Право на любовь

Арская Арина
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на любовь

Играть, чтобы жить. Книга 3. Долг

Рус Дмитрий
3. Играть, чтобы жить
Фантастика:
фэнтези
киберпанк
рпг
9.36
рейтинг книги
Играть, чтобы жить. Книга 3. Долг

Вечный Данж. Трилогия

Матисов Павел
Фантастика:
фэнтези
юмористическая фантастика
6.77
рейтинг книги
Вечный Данж. Трилогия