Чудеса и катастрофы Вселенной
Шрифт:
Как астрономы добывают знания о сверхдальних объектах?
Сотрудники отдела Релятивистской астрофизики Государственного астрономического института им. П. К. Штернберга разработали модель эволюции ТДС. В компьютере «рождаются» двойные звезды, которые затем живут pi видоизменяются согласно заданным законам.
Реально существует множество различных типов двойных систем, и при моделировании можно следить за системами всех этих типов. Рассматривается промежуток времени от 0 до 10 млн лет, а за такой период не все типы двойных систем успевают сформироваться. Но при этом трудно рассчитывать на появление редких, экзотических
Если система состоит из черной дыры и сверхгиганта, не заполняющего свою полость Роша (т. е. если его вещество не перетекает в быстром темпе на черную дыру), то мы будем называть такую систему источником типа Cyg X-1 в Лебеде — наиболее известного представителя этого типа, являющегося одним из лучших кандидатов в черные дыры, наравне с рентгеновскими новыми. Аккреция в такой системе идет из звездного ветра, и рентгеновская светимость может достигать значительной величины, но не слишком близкой к критической.
Если на компактный объект падает больше вещества, чем он может «проглотить», то из-за давления излучения часть падающего газа будет отбрасываться обратно. Сверхаккрецирующие черные дыры могут иметь наблюдательные проявления в виде струй ( джетов), а в центре Галактики как раз наблюдаются кандидаты в черные дыры, обладающие струйными истечениями вещества. Также можно рассмотреть системы, состоящие из черной дыры и звезды главной последовательности (ЧД + ГП).
В первые несколько миллионов лет «прародители» нейтронных звезд еще не успели проэволюционировать. Время жизни некоторых систем может быть невелико, и такие источники быстро вымирают. Таким образом, наши предки миллионы лет назад имели куда большие шансы обнаружить черные дыры в центральной области Галактики. К счастью (или к сожалению?), они предоставили это нам. Сейчас может быть всего несколько систем такого типа. Согласно расчетам, на 7 млн лет существует всего несколько таких систем.
Ученым удалось сравнить предсказания модели с наблюдениями. Наиболее ценные данные о рентгеновских источниках в центре Галактики дали наблюдения со спутника «Гранат». У кандидатов в черные дыры, источников 1Е 1740.7-2942 («Великий Аннигилятор») и GRS 1758-258, в радиодиапазоне наблюдаются джеты. На временном масштабе порядка месяцев поток жесткого рентгеновского излучения от этих объектов изменяется в десятки раз.
ТАК ЧТО ЖЕ ПРОИСХОДИТ В ЦЕНТРЕ ГАЛАКТИКИ?
Основной вывод таков: наблюдаемое количество и пространственное распределение рентгеновских источников в центральной области Галактики не противоречат гипотезе о вспышке звездообразования, происшедшей около 7 млн лет назад.
В дальнейшем было бы интересно проследить эволюцию некоторых других типов объектов, особенно одиночных черных дыр и нейтронных звезд, аккрецирующих вещество межзвездной среды. Такие объекты могут наблюдаться на расстоянии центра Галактики современными спутниками лишь при очень малой скорости релятивистского объекта относительно межзвездной среды (порядка 10 км/с), что маловероятно. Однако одиночные нейтронные звезды могут быть периодическими источниками с большей светимостью в случае накопления вещества на магнитосфере.
Моделирование эволюции тесных двойных систем дает возможность не только оценки изменения количества рентгеновских источников в галактиках с течением времени и суммарной рентгеновской светимости галактик, но и позволяет рассмотреть более локальные события, такие как вспышки звездообразования. Особое место также занимают галактики со вспышкой звездообразования в ядерной области. Сейчас популярна гипотеза, что на протяжении миллиардов лет эти галактики испытывают короткие вспышки бурного звездообразования в своих центральных областях.
Итак, по всей видимости, несколько миллионов лет назад в центре нашей Галактики произошла мощная вспышка звездообразования, результатом которой являются, в частности, наблюдаемые в этой области рентгеновские источники.
Изучая химический состав формирующегося планетарного диска вокруг звезды Бета Живописца, американские астрономы обнаружили в нем аномально высокое содержание углерода — элемента, составляющего основу жизни на Земле. По словам сотрудницы Лаборатории экзопланет и звездной астрофизики НАСА (ExoPlanets and Stellar Astrophysics Laboratory) доктора Аки Роберге (Aki Roberge), руководившей исследовательской группой, «… поиск планетарных систем, формировавшихся так же, как наша, много лет заботит ученых. Но то, что нашли мы, оказалось большим сюрпризом: вокруг этой звезды углерода больше, чем можно было ожидать. Там происходит что-то необычное».
Бета Живописца — звезда в возрасте от 8 до 20 млн лет. В спектрах далекой звездной системы были зафиксированы также неоднородности, которые позволяют сделать выводы о наличии планет. Выяснилось, что в веществе звезды много ионизированного углерода. Исходя из этого можно предположить, что планеты вокруг Бета Живописца сильно отличаются от объектов Солнечной системы. Например, их атмосфера должна быть богата метаном (как на Титане), а в астероидах и кометах ожидается высокое содержание графита и органических соединений. Более того, другая участница исследования — Алисия Вейнбергер (Alycia J. Weinberger) — уверена, что там существуют холодные планеты и с них испаряется метан (в состав которого входит углерод), что и создает такую картину.
На расстоянии 10 тыс. световых лет в созвездии Наугольника астрономы. обнаружили объект, аналогов которому еще не наблюдали. На первый взгляд, это обычная нейтронная звезда. Но, как говорит руководитель исследования Андреа де Люка (Andrea De Luca) из миланского Национального астрофизического института (Istituto Nazionale di Astrofisica), проблема в том, что этот относительно молодой объект ведет себя так, будто ему уже несколько миллионов лет. Туманность RCW103, в которой находится странный объект, известна более 25 лет.
Объект назвали 1Е 161348-5055.
Ученые, возможно, ничего необычного и не заметили бы, но наблюдение, проведенное с помощью гамма-телескопа «ХММ-Newton», показало, что рентгеновское излучение объекта — небольшой голубоватой точки в центре — меняется с периодичностью в 6,7 ч, т. е. в десятки тысяч раз медленнее, чем это должно происходить у недавно возникшей нейтронной звезды. Это тем более удивительно, что возраст объекта порядка двух тысяч лет, но он ведет себя так, как ведут себя нейтронные звезды, которым уже миллионы.