Чтение онлайн

на главную

Жанры

Далекое будущее Вселенной Эсхатология в космической перспективе
Шрифт:

В такой ситуации рациональный выбор каждого игрока — стрелять в противника. Повлиять на собственную судьбу игрок не может; но может хотя бы вывести из строя одного из противников и тем улучшить свое положение независимо от того, выживет ли он сам.

Если каждый игрок стреляет в случайную мишень, легко понять, что у каждого из них есть 25–процентный шанс выжить. Возьмем игрока А: его может застрелить Б, или В, или они оба одновременно (три возможности), или же Б и В могут выстрелить друг в друга (одна возможность). В целом имеется 75–процентная вероятность выживания одногоиз игроков (А, Б или В) и 25–процентная вероятность, что не выживет никто (не будет двух игроков, выстреливших в одного противника).

Исход:стрельба неизбежна, выживших — один или ни одного [74] .

12.3.2. n

раундов (n>= 2 и известно)

Предположим, что в первых n - 2 раундах никто не стрелял. Далее мы покажем, что в раунде (n - 1) по меньшей мере у двух игроков появляются рациональные основания для выстрела.

Для начала рассмотрим ситуацию, в которой противник убивает А. Разумеется, А выгоднее всего стрелять: он ведь так или иначе будет убит. Более того, ему выгоднее стрелять в того противника, в которого не стреляют ни Б, ни В (а такой обязательно будет хотя бы один) [75] .

74

Если имеется один выживший, это означает, что не все игроки стреляли каждый в своего противника. Очевидно, для двоих невыживших в этой ситуации исход №4 (ни одного выжившего) был бы предпочтительнее, чем исход №5 (один выживший). По сути, стратегии, предполагающие исход №4 (каждый игрок стреляет в своего противника), образуют равновесие Нэша,поскольку, если кто-то из игроков отклонится от стратегии и выстрелит в того же противника, что и другой, он ухудшит ситуацию (исход №5). Однако, чтобы равновесие Нэша действовало, игрокам необходима возможность общаться и координировать свои действия, что запрещено правилами. Существуют еще три варианта равновесия Нэша, в каждом из которых два игрока стреляют друг в друга, а третий воздерживается от стрельбы, но мы отвергаем их, поскольку отказ от стрельбы представляет собой обусловленнуюстратегию (в нашем случае стратегий две: стрелять в одного или другого из своих противников), которая не может ухудшить ситуацию и, напротив, иногда ее улучшает.

75

Как мы показали в примечании 6, когда каждый игрок стреляет в своего противника, их стратегии образуют равновесие Нэша. В этом случае стрельба начинается немедленно по причинам, изложенным в примечании 8.

Теперь предположим, что А никто не убивает. Если Б и В убивают друг друга, у А нет причин стрелять (хотя выстрел ему не повредит). Если один из противников, например Б, воздерживается от выстрела и В его убивает, самое разумное для А — тоже не стрелять, поскольку теперь он может уничтожить В в следующем раунде. (Обратите внимание, что В не угрожает А — свою единственную пулю он уже истратил.) Предположим, что от выстрелов воздерживаются и Б, и В. Если А стреляет в своего противника, например в Б, то в n–ном раунде В убивает А. Но, если А тоже воздерживается от выстрела, игра переходит в n–ный раунд и, как мы обсуждали ранее, у А остается 25–процентный шанс выжить. Таким образом, если не стреляет никто, для А разумнее всего тоже не стрелять.

Воздерживается ли игрок от стрельбы на протяжении (n-1) раундов или нет (та или иная стратегия может быть лучшей, в зависимости от того, что делают другие игроки) — в n–ном раунде, при условии, что имеется больше одного выжившего и, как минимум, у одного игрока остается пуля, разумнее всего стрелять. Однако предвидение неизбежной стрельбы в n–ном раунде может заставить игроков «развернуть» свои стратегии уже в первом и втором раундах [76] .

Исход:стрельба неизбежна, выживших — один или ни одного.

76

Поясню, что это значит. В n–ном раунде (с известным n) игроки неизбежно начнут стрелять, если у них останется хотя бы одна пуля. Известно, что этот выбор оптимален в последнем раунде; однако игроки не ухудшат свое положение, и если сделают его в (n-1) раунде, рассматривая (n-2) раунд как предпоследний. Это рассуждение может постепенно подвести игроков к первому раунду, причем они будут рассматривать его как предпоследний, а второй — как последний. Таким образом, вполне разумно стрелять уже в первом и втором раундах.

12.3.3. п раундов (п неограничено)

Новый поворот сюжета: в такой игре рациональным выбором является отказ от стрельбы всех игроков во всех раундах, в результате чего выживают все трое. Как это может произойти? Здесь применим уже известный аргумент: «Если в тебя выстрелили — постарайся хотя бы сам кого-нибудь застрелить». Но даже если вы, предположим, А, а Б стреляет в В, наилучший выбор для вас — убить Б, оставшись единственным выжившим (исход № 1). Как и в предыдущих играх, независимо от того, стреляют в

вас или нет, лучший выбор для вас — в первом же раунде застрелить того, кто не стал мишенью другого вашего противника.

Но теперь предположим, что Б и В воздерживаются от выстрелов в первом раунде, и рассмотрим ситуацию А. Стрелять в противника в первом раунде для А неразумно, поскольку в следующем раунде его застрелит оставшийся противник (а если n неограничено, следующий раунд будет всегда). Однако, если все трое не будут стрелять и продолжат поступать так же в последующих раундах, все они останутся живы. Хотя это и не «лучшая» стратегия для всех ситуаций [77] , возможности выживания при неограниченном п повышаются.

77

Это связано с тем, что лучший выбор для игрока зависит от того, что делают другие игроки. Напротив, не стрелять первым в последовательной триэли, разобранной нами ранее — необусловленнаястратегия, которую невозможно улучшить, наблюдая за действиями других игроков.

Исход:выживших может быть нуль, один (А, Б или В) или трое, но не двое.

12.3.4. Бесконечный горизонт

Эта триэль — вариант предыдущей ситуации (раздел 12.3.3), однако включающий в себя более реалистическое условие. А именно: по окончании раунда i и всех последующих раундов происходит случайное событие, определяющее, продлится ли триэль еще, как минимум, на один раунд (с вероятностью p iв конце раунда i) или окончится немедленно (с вероятностью 1 — р i). Таким образом, вероятность, что триэль окончится после к раундов равна р 1, р 2… р k-1(1 — р k) Триэль ограничена в том и только том случае, если р iдля какого-то раунда i равно нулю.

Если триэль не ограничена (то есть имеет бесконечный горизонт), она моделирует игры, которые, как и сама жизнь, — не длятся вечно. Мы не можем сказать, в какой точке остановится эта игра, однако знаем, что продолжаться бесконечно она не будет. В таких обстоятельствах, если р iв каждом раунде i достаточно высоко, может быть рациональным выбором не стрелять вообще (Brams и Kilgour [6] показывают, что то же верно для последовательной триэли с установленным порядком ходов). Однако структура таких игр предполагает ожидание, что через несколько раундов триэль будет иметь какой-либо определенный исход. Например, если для всех i р i= 0,51, существует вероятность 1 — (0,51) 20= 0,9999986, что после двадцати раундов игра окончится. Поэтому эффективная стратегия — думать о ней как об игре с n раундами (с известным n), как в ситуации, описанной в 12.3.2, поскольку имеется лишь немногим более одного шанса на миллион (то есть вероятность 0,0000014), что игра не закончится к двадцатому раунду.

Рассматривая окончание игры как неизбежность и применив рассуждение, описанное в разделе 12.3.2, игроки начнут стрелять друг в друга в первых двух раундах, в результате чего останется, самое большее, один выживший [78] .

Исход:количество выживших зависит от того, рассматривается ли триэль как ограниченная (выживает, самое большее, один игрок) или как неограниченная (при достаточно высоком p iмогут выжить все трое).

78

Такой отказ от сотрудничества не зависит от того, через какое время (два раунда, двадцать раундов или более) игроки ожидают конца игры. Когда бы ни завершалась игра, даже если ее окончание определяется вероятностным образом (как в игре с бесконечным горизонтом), разумный выбор игроков на старте, использующих обратную индукцию — стрелять немедленно.

12.4. Повесть о двух будущих

Наш анализ триэли с бесконечным горизонтом показывает, что возможен конфликт между двумя возможными будущими [79] :

1. Каждый процесс должен окончиться в какой-то определенной точке (например, продолжительность человеческой жизни имеет верхний предел, предположим, 125 лет).

2. Точное время конца непредсказуемо (то, что 125–летний человек доживет до 126, быть может, крайне маловероятно, но не невозможно).

79

Оставшаяся часть статьи является пересказом рассуждений Brams и Kilgour [6], хотя проанализированные ими случаи триэли несколько отличаются от обсуждаемых здесь; см. также Bossert, Brams и Kilgour [2].

Поделиться:
Популярные книги

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Приручитель женщин-монстров. Том 4

Дорничев Дмитрий
4. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 4

Бесноватый Цесаревич

Яманов Александр
Фантастика:
альтернативная история
7.00
рейтинг книги
Бесноватый Цесаревич

Тринадцатый IV

NikL
4. Видящий смерть
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Тринадцатый IV

Гром над Империей. Часть 4

Машуков Тимур
8. Гром над миром
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Гром над Империей. Часть 4

Варлорд

Астахов Евгений Евгеньевич
3. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Варлорд

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Отмороженный 10.0

Гарцевич Евгений Александрович
10. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 10.0

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6