Чтение онлайн

на главную

Жанры

Шрифт:

Один из способов повышения разрешающей силы микроскопа и, следовательно, максимально возможного увеличения является уменьшение длины волны света, в лучах которого исследуется объект. Первым препятствием для укорочения волны является нечувствительность нашего глаза к ультрафиолетовым излучениям. Заменяя глаз фотопластинкой, можно значительно продвинуться в область ультрафиолетовых лучей и тем самым повысить разрешающую способность и полезное увеличение микроскопа. Очень больших успехов в деле создания ультрафиолетовых микроскопов добился советский ученый Е. М. Брумберг.

Такие микроскопы довольно часто применяются учеными, но они имеют один немаловажный недостаток — исследуемый

объект можно увидеть только после проявления фотографий. Поэтому в настоящее время в ультрафиолетовый микроскоп вводят еще одно важное устройство— преобразователь изображениях его помощью недоступное глазу изображение в ультрафиолетовых лучах превращается в видимое. Преобразователи такого рода основаны на хорошо известном явлении фотоэффекта.

А пока вернемся к очень интересному методу цветной ультрафиолетовой фотографии микроскопических объектов.

По существу, ни о каких естественных цветах в этом случае говорить нельзя. Но очень часто для лучшего различения мелких деталей объекта и определения оптических свойств отдельных его частей объект фотографируют в различных участках спектра ультрафиолетовых лучей. Можно условно назвать самые длинноволновые из них красными, промежуточные— зелеными, а самые коротковолновые — синими. Три негатива, полученные таким способом, можно использовать для получения цветного отпечатка. Изображение такого рода может оказаться гораздо более подробным: участки красного цвета на нем будут соответствовать тем местам изображения, где от объекта приходило много длинноволновых ультрафиолетовых лучей; зеленые цвета покажут, где приходило много промежуточных лучей, и так далее. Зная теорию смешения цветов, вы можете судить о составе лучей и в тех местах, где имеются отличные от исходных хроматические цвета. Одна из фотографий подобного рода приведена здесь.

Ультрафиолетовые микроскопы Брумберга позволяют примерно вдвое повысить разрешающую способность и полезное увеличение микроскопа. К сожалению, идти по пути еще большего укорочения световых волн затруднительно, вследствие того что большинство объектов очень сильно поглощает короткие ультрафиолетовые лучи. Кроме того, возникают трудности и иного рода. Они уже связаны с оптическими свойствами стекла: с сильным поглощением ультрафиолетовых лучей в стекле.

В последние годы в микроскопии стал широко использоваться и другой участок диапазона невидимых световых лучей — инфракрасный. Разрешающая сила микроскопов и полезное увеличение при работе в этих лучах, естественно, снижаются, но цель применения инфракрасных лучей в микроскопии другая; эти лучи позволяют вести такие исследования, которые раньше казались совершенно невыполнимыми. Оказывается, что многие органические и неорганические вещества, непрозрачные для лучей видимого света, хорошо пропускают инфракрасные. Это позволяет исследовать их микроструктуру с помощью специальных инфракрасных микроскопов.

Модель инфракрасного микроскопа была создана электрофизической лабораторией Института металлургии Академии наук СССР в 1956–1957 годах. Эта модель хорошо зарекомендовала себя, и с 1960 года начался выпуск инфракрасных микроскопов «МИК-1».

Микроскоп этого типа позволяет проводить наблюдения как в видимых, так и в ближней зоне (до 1200 миллимикронов) инфракрасных лучей. Наблюдение может вестись в отраженном и проходящем свете. В микроскопе имеется преобразователь, и поэтому изображение можно наблюдать непосредственно или фотографировать.

Мы привыкли считать металлы непрозрачными, и действительно нам никогда не приходилось видеть их иными. И, если бы к кому-либо из нас попал чистый кремний (силиций) или чистый германий (экасилицием называл

его Менделеев, предсказавший существование этого химического элемента), мы, глядя на блестящие серебристые кусочки этих металлов, и не подумали бы, что они прозрачны. На самом же деле они очень хорошо пропускают свет, но не видимый, а инфракрасный.

В наши дни кремний и германий — металлы новейшей радиоэлектроники.

Именно из кристаллов этих химических элементов делаются многие полупроводниковые устройства: диоды, фотодиоды, транзисторы, фототранзисторы, солнечные батареи для спутников, элементы холодильных устройств. Для их изготовления кремний и германий должны быть полностью очищены от различных примесей, а их кристаллическое строение не должно иметь никаких дефектов. Получение химически чистых крупных кристаллов — одна из самых сложных задач, когда-либо решавшихся металлургией. И поэтому не случайно, что инфракрасный микроскоп создали не в каком-либо оптическом институте, а в Институте металлургии, где он, по-видимому, был наиболее необходимым.

Инфракрасный микроскоп позволяет заглянуть внутрь кристаллов кремния и германия. Он дает возможность более глубоко изучить возникающие дефекты и тем самым найти пути их устранения. На помещенной здесь фотографии, сделанной с помощью «МИК-1», видно изображение кристалла кремния; темные загнутые линии и есть дефекты его строения.

Фотография дефекта в кристалле кремния, полученная в инфракрасных лучах с помощью микроскопа «МИК-1». Эту фотографию сделали сотрудники Института металлургии Академии наук СССР.

Итак, инфракрасные лучи позволили проникнуть в толщу непрозрачных для обычного света веществ. Но при этом разрешающая сила и полезное увеличение микроскопа упали. И, видимо, у большинства читателей уже давно возник вопрос: «Почему же для этих целей не были использованы рентгеновские или гамма-лучи, которые практически проникают через все вещества и в то же время имеют очень короткие длины волн?»

Вопрос этот совершенно справедливый. Действительно, микроскоп, работающий на этих лучах, имел бы очень высокую разрешающую способность. С его помощью можно было бы увидеть даже молекулы.

Ученые пытались строить рентгеновские микроскопы. И они уже существуют. Но пока еще не созданы такие инструменты, которые могли бы сравниться по качеству с обычными микроскопами.

Сложность заключается в том, что науке неизвестен какой-либо материал, который мог бы преломлять рентгеновские или гамма-лучи подобно тому, как преломляет стекло обычные световые волны. Делались попытки использовать вместо линзовых рефлекторные схемы, но и на этом пути не добились большого успеха. Зеркало, которое великолепно отражает лучи видимого и даже ультрафиолетового света, для рентгеновских лучей представляет собой не гладкую отражающую, а изрытую глубокими бороздами и ямами поверхность. Это происходит потому, что неровности, которые были неощутимы для довольно длинных волн видимого света, становятся соизмеримыми и даже превышают длину волны рентгеновского и гамма-излучения. Поэтому полировка зеркал для таких коротковолновых лучей требует необыкновенной, недостижимой по разным причинам чистоты поверхности. Но это еще не вся трудность. Не менее существенно и то, что рентгеновские лучи могут отражаться от зеркал только в том случае, если углы их падения отлогие. При достаточно крутых углах отражения не происходит даже и при хорошем зеркале — лучи проникают в его толщу.

Поделиться:
Популярные книги

Камень. Книга пятая

Минин Станислав
5. Камень
Фантастика:
боевая фантастика
6.43
рейтинг книги
Камень. Книга пятая

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Начальник милиции. Книга 3

Дамиров Рафаэль
3. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 3

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Лорд Системы 13

Токсик Саша
13. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 13

На границе империй. Том 9. Часть 4

INDIGO
17. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 4

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Гарем вне закона 18+

Тесленок Кирилл Геннадьевич
1. Гарем вне закона
Фантастика:
фэнтези
юмористическая фантастика
6.73
рейтинг книги
Гарем вне закона 18+

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания