Диалоги (декабрь 2003 г.)
Шрифт:
Это направление, палеонтология докембрия, развивается очень активно. И сейчас вообще произошли серьезные сдвиги, потому что, скажем, 15–20 лет тому назад никто бы не решился сказать, что бактерии сохраняются в ископаемом состоянии так же, как кости, ракушки и так далее. А оказалось, что они не только сохраняются, но они сохраняются изумительно, и ничуть не хуже, чем сохраняются другие ископаемые, которые имеют раковину, кости и так далее.
Теперь я всё-таки пойду сверху вниз. Знаете, сегодня мы имеем такую привычную фауну, когда даже дети отличают слонов от, скажем, гусениц, бабочек и так далее. Но такой более менее современный вид вся органика приобрела не так давно. Земля-то существует 4,5 миллиарда лет,
На картинке, которую сейчас вы видите, показаны первые скелетные фауны. Это приблизительно 550–600 миллионов лет тому назад, когда очень многие организмы приобрели возможность строить скелет. До этого почти их не было. И большинство этих ископаемых имели фосфатные скелеты. Не очень выгодная энергетически система, потом всё больше становилось ископаемых с карбонатными скелетами. Эта фауна очень интересная, название её – Томмотская, и это было достижение нашей российской, советской тогда науки – выяснение того, что есть такой момент, когда животные в массе приобретают возможность строить скелет.
Если мы пойдем дальше вглубь, то столкнемся со следующей фауной, где в основном тоже нормально развитые организмы. Это многоклеточные организмы, животные, но они все не имеют скелета. Сейчас на картине вы можете посмотреть некоторых представителей этой фауны, они близки к червям, медузам, может быть, к кишечно-полостным. Это знаменитая Вендская или Вендо-эдиокарская фауна. Впервые она была описана в Австралии, потом огромное местонахождение, сейчас богатейшее в мире, было найдено на Белом море. У нас в институте занимаются этим, и кстати, у истоков описания этой фауны в России тоже стоял академик Б.С. Соколов, а сейчас член-корреспондент М.А. Федонкин, который его заместил на посту заведующего лабораторией, и целая плеяда молодых людей, которые работают в институте.
Но обычные представления, которые вы увидите в учебниках, сводятся к тому, что отсюда начинается реальная жизнь многоклеточных. На самом деле это оказалось совсем не так. Древнее Венда были обнаружены многие ископаемые. Некоторые из них я проиллюстрирую. Сейчас на картине вы увидите такие похожие на червяков кругленькие колечки. Это так называемые грипании, они были описаны из Верхней Рифии, то есть порядок цифр – 700 миллионов лет.
Но когда это 700 миллионов лет, и когда это метафита, то есть эвкаритические многоклеточные организмы, но все-таки растительного происхождения, это всё еще мало интересно. Но совсем недавно, несколько лет тому назад эти же организмы, эти грипании были найдены в отложении с возрастом в 2,1 миллиарда, что означает, что представления наши о том, где у нас начинаются многоклеточные в истории, должны быть серьезно изменены.
Но если мы пойдем дальше, то следует сказать, что было много забыто, много было известно уже давно, но как-то не обращали внимания. Некоторые вещи наши коллеги игнорировали, поскольку это было найдено на нашей территории, тут всякие приоритетные моменты имели значение. Сейчас вы можете видеть на картине очень интересные вещи, это 1 миллиард 900 миллионов, но это метазоа. Это, скорее всего, кишечно-полостные, но может быть, это и полихетного типа существа, то есть черви.
Если это черви, то это более высокая организация. Но и кишечно-полостных достаточно: миллиард 900 миллионов, а у вас уже организм, который…
А.Г. Является многоклеточным животным.
А.Р. Да. То есть это вообще – будь здоров. На протяжении всего времени существования этих организмов, и других аналогичных, существуют ещё так называемые акритархи. Может быть, можно показать картинку с акритархами. Это одноклеточные, планктонные формы, они достаточно понятны по многим признакам. Это эвкаритические организмы, и они у нас находятся во всём проторозое, то есть от приблизительно двух миллиардов с лишним, и до кайнозоя, то есть до того момента, когда вымерли динозавры. Они хорошо сохраняются, потому что это всё состоит из органической субстанции, которая не поддается разрушению кислотами. Это легко выделяется из пород и потом изучается под микроскопом.
Теперь ещё несколько слов о других организмах, которые были найдены в древних породах. Сейчас вы видите на картинке очень любопытные трубочки, это трубочки, вероятнее всего, бактерий, возрастом в 3,5 миллиарда. Это было описано несколькими исследователями, это были Шопф, Френсис Вестол. Эти трубочки, кроме всего прочего, описаны из очень похожих на стромотолиты образований, а стромотолиты обычно считаются цианобактериальными холмами. И если это стромотолиты и это трубочки, то тогда нужно думать, что это возраст 3,5 миллиарда – уже цианобактерии.
А.Г. Кислородная атмосфера.
А.Р. Конечно. И представляете, что дальше. Дальше цианобактерии, а это, вообще говоря, среди бактерий одни из самых сложных организмов.
Вы правильно сказали насчет кислорода. Эти открытия начинают входить в противоречия с очень многими фактами, которые обосновывали концепцию невозможности присутствия кислородной атмосферы в это время. Но я как-то обратил внимание на рисунок, который вы сейчас увидите на экране. Здесь с левой стороны – зерна уранинита, а с правой стороны – зерна современного пляжа Австралии, где добывается минерал моноцит. Я этот снимок видел многократно, много лет, и как-то совершенно не обращал на него внимания. А соль в том, что уранинит, если он окатанный, а здесь показан вроде бы как окатанный уранинит, не может сохраниться в такой форме, если в атмосфере есть кислород, тогда он должен перейти в другую форму окислов урана.
А.Г. То есть это основной аргумент в пользу бескислородной атмосферы.
А.Р. Один из основных аргументов. Там были и другие аргументы, но этот считался очень сильным аргументом. И вдруг я обратил внимание на то, что, посмотрите, под этим уранинитом стоит шкала 0,1 миллиметра, а под зёрнами современного пляжа Австралии стоит другая шкала. Зёрна уранинита, это около 0,1 миллиметра, зёрна моноцита – 0,2 миллиметра и больше, а по форме они похожи. Но люди, которые это напечатали и которые так аргументировали эту позицию, забыли о том, что 0,15 миллиметра – это граница окатываемости. Если есть у вас какой-то обломок меньше, чем 0,15, то он будет остроугольный. Значит, то объяснение, что уранинит – это окатанные зёрна, не корректно. Значит, нужно искать какое-то другое объяснение. Я не знаю этого материала и не видел его в микроскоп, но я подозреваю, что это, вообще говоря, бактериальные сгустки, поэтому они имеют такую форму. Мы очень часто встречаем такого рода образования.
А на следующей картинке с пляжа Австралии, обратите внимание, все зёрна остроугольные, никаких окатанных зёрен нет, а всё, что вы видите круглое, это не зёрна обломочные, а живые фораминиферы.
Подведя некоторый итог, можно было бы составить таблицу, которую, я надеюсь, нам тоже покажут. Здесь черным показано появление разных по степени организации организмов. Взято это из книги Шопфа, которая была издана где-то порядка 20 лет тому назад. На тот момент было известно то, что показано черным. Надо сказать, что и сейчас в основных учебниках вы увидите приблизительно то, что нарисовано черным. А серым – те данные, которые были получены в последнее время или реабилитированы из тех, которые были известны, но на которые не обращали внимания. Обратите внимание, что, скажем, грибы (здесь они серым нарисованы) появляются, по крайней мере, уже два с лишним миллиарда лет тому назад. У Шопфа вообще грибов никаких не было.