Чтение онлайн

на главную

Жанры

Дневная звезда. Рассказ о нашем Солнце

Миттон Саймон

Шрифт:

Все началось совсем в стороне от исследований Солнца, с новой теории Вселенной Бранса и Дикке, которая была предложена ими в противовес общей теории относительности Эйнштейна. Это так называемая скалярно-тензорная теория гравитации. При анализе этой теории стало ясно, что Солнце может помочь в решении вопроса, действительно ли теория Эйнштейна неверна. Как уже упоминалось, планета Меркурий может служить хорошим «зондом» для изучения гравитационного поля Солнца. Эллиптическая орбита этой планеты непрерывно поворачивается в пространстве, то есть орбита представляет собой вращающийся эллипс, положение которого после того, как планета совершила полный оборот, будет несколько отличаться от прежнего. Это движение, называемое поворотом перигелия Меркурия, имеет дополнительную составляющую, с большой

точностью объясняемую общей теорией относительности Эйнштейна. Объяснение всех трудностей, связанных с поведением ближайшей к Солнцу планеты, было как раз одним из триумфов общей теории относительности.

Новая теория взаимодействия вещества и гравитации Бранса — Дикке не смогла объяснить смещения, соответствующего 7% дополнительной составляющей движения орбиты Меркурия.

Дикке нашел следующий выход из создавшегося положения. Он предположил, что Солнце слегка сплюснуто, как апельсин; в этом случае Меркурий не будет двигаться в совершенно симметричном солнечном гравитационном поле. Для сохранения теории необходимо весьма незначительное искажение формы Солнца; достаточно, чтобы его экваториальный и полярный радиусы отличались всего на 30 км. Таким образом, необходимо было снова обратиться к исследованию Солнца.

Однако измерения таких малых (~0,05%) искажений формы Солнца очень трудны. Теоретикам также надо была понять, из-за чего Солнце может оказаться сплюснутым. Была предложена гипотеза, что сплюснутость объясняется быстрым вращением ядра. Это бы означало, что ядро вращается быстрее внешних слоев Солнца. Такая идея казалась привлекательной и по другой причине: быстрое вращение понизила бы температуру в центре Солнца и тем самым уменьшило бы поток нейтрино. Таким образом, теория Эйнштейна оказалась под ударом, поскольку новая теория могла походя решить проблему нейтрино. Только измерения могли решить этот вопрос.

Поверхность Солнца — не гладкая. Бури, вспышки и солнечные пятна искажают ее. Более того, эти явления влияют на яркость и вносят тем самым ошибку в измерения формы диска. Генри Хилл в Аризонском университете построил телескоп, специально предназначенный для обнаружения искажения формы солнечного края. Однако никаких искажений не было обнаружено. Это означало, что Эйнштейн был прав; центральные части Солнца не испытывают быстрого вращения, а проблема нейтрино остается все еще нерешенной. Но путем многочисленных измерений Хилл и его коллеги открыли новое явление: периодические колебания Солнца. На солнечном лимбе он обнаружил явление, подобное колокольному звону. Но этот звон имеет очень низкий тон, основной период колебаний равен 52 мин: кроме того, «слышны» еще несколько гармоник.

Открытие колебаний Солнца, сделанное совершенно случайно в результате проверки неверной теории, имеет важные последствия для теоретиков-создателей солнечных моделей. Подобно тому как сейсмические колебания Земли, вызванные землетрясениями, дают информацию о внутренней структуре Земли, нормальные моды колебания Солнца сильно зависят от распределения температуры и плотности внутри Солнца. Кембриджские исследователи использовали удивительные результаты Хилла для критического анализа моделей структуры Солнца. Классические солнечные модели выдержали это испытание с честью, но в результате нейтринная проблема так и остается нерешенной.

Другие группы исследователей сообщили об обнаружении солнечных колебаний с еще более длинными периодами, равными почти трем часам. Поскольку эти измерения не были подтверждены независимыми экспериментами, они пока не могут считаться надежно установленными. Но если трехчасовые колебания Солнца окажутся действительно реальными, это снова вызовет смятение в умах теоретиков.

По нашему мнению, современные представления о центральных областях Солнца хорошо обоснованы, причем теория и наблюдения неплохо подтверждают друг друга. Это также означает, что модели эволюции звезд главной последовательности подобных Солнцу, по всей вероятности, близки к истине. Конечно, изучение самих звезд помогает подтвердить результаты солнечных исследований. Особенно важным представляется изучение поведения звездных скоплений. Когда в космическом газовом облаке рождается звездное скопление, его члены сильно различаются по массе. Поскольку звезды с большей массой эволюционируют быстрее, в каждый определенный момент скопление представляет собой картину звездной эволюции: тяжелые звезды почти при смерти, а небольшие только-только начали использовать свои топливные запасы. Поэтому диапазон свойств звезд внутри скопления характеризует различные фазы развития нормальной звезды. Изучение скопления является наиболее важной основой для проверки звездных моделей. Анализ звездных скоплений подтвердил нашу веру в надежность солнечных моделей.

В этом кратком обзоре мы подошли к пределу наших знаний о структуре внутренних областей Солнца. Помогут ли новые результаты решить проблему нейтрино? Будем надеяться на это. В оставшейся части этой книги наше внимание будет обращено на то, что можно назвать наружностью Солнца, на те слои, которые непосредственно поддаются наблюдениям.

Поверхность и атмосфера

Видимая поверхность Солнца, фотосфера, находится в состоянии непрерывной активности. Турбулентные движения конвективных ячеек под поверхностью приводят к образованию тонкой структуры солнечной грануляции, описанной в гл. 4. Температура поверхности может быть определена несколькими способами. Например, если для спектрального распределения белого света фотосферы найти с возможно большей точностью соответствующую кривую излучения черного тела, то мы определим чернотельную температуру фотосферы. Она оказывается равной 6000 К. Другой способ заключается в нахождении температуры Солнца исходя из величины излучаемой им энергии. Эта температура оценивается в 5800 К.

Не существует какой-то одной «правильной» солнечной температуры, так как Солнце — сложный объект, в котором температура меняется с высотой над поверхностью. Мы получаем энергию от слоя толщиной около 500 км, температура в котором меняется с глубиной. Излучение центра диска приходит в основном от слоев с температурой газа, равной 6500 К, в то время как за излучение края ответственны более холодные слои. Любой метод определения температуры является компромиссным, но это не так важно, если точно определены его условия.

Резкий край Солнца, о котором мы говорили в гл. 4, возникает следующим образом. Вблизи фотосферы большая часть поглощения видимого света создается особым типом атома водорода. Обычный атом водорода имеет один протон и один обращающийся вокруг него электрон, он устойчив и электрически нейтрален. Иногда атом водорода на время может захватить добавочный электрон, превращаясь в атом водорода с двумя электронами и отрицательным электрическим зарядом. Такая частица называется отрицательным ионом водорода. Это состояние может сохраняться лишь в определенном интервале температур. На Солнце переход от одного состояния к другому происходит быстро, и в результате, когда излучение просачивается вверх, оно внезапно встречает область, в которой поглощающие его ранее ионы водорода практически отсутствуют. Поэтому излучение почти беспрепятственно выходит наружу. Именно внезапность изменений, как уже отмечалось ранее, и приводит к появлению резкого солнечного края.

Желто-белый свет фотосферы обладает плавно меняющимся спектром, в котором отсутствуют линии. Но прежде чем покинуть Солнце окончательно, свет должен пересечь более холодные слои его атмосферы. Внутри этой более холодной зоны свет испытывает поглощение, благодаря которому мы получаем очень ценную информацию относительно атмосферных условий. В старых книгах этот слой иногда называется обращающим.

Хорошо известно, что радуга возникает в результате взаимодействия солнечного света с дождевыми капельками. Научный анализ солнечных радуг начался с Исаака Ньютона, который в 1665 г. разложил свет в цветной спектр при помощи призмы, поставленной на пути узкого светового пучка. Он производил оптический опыт, не ставя перед собой каких-либо астрономических задач. Ньютон обнаружил наличие цветного спектра и тем самым положил начало солнечной спектроскопии. Впервые темные линии в солнечном спектре зарегистрировал в 1802 г. Волластон. Это подтолкнуло других астрономов на спектральные исследования; самым выдающимся был Фраунгофер.

Поделиться:
Популярные книги

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Не грози Дубровскому! Том Х

Панарин Антон
10. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том Х

Сила рода. Том 1 и Том 2

Вяч Павел
1. Претендент
Фантастика:
фэнтези
рпг
попаданцы
5.85
рейтинг книги
Сила рода. Том 1 и Том 2

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Жандарм 3

Семин Никита
3. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 3

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Я до сих пор не князь. Книга XVI

Дрейк Сириус
16. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я до сих пор не князь. Книга XVI

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами