Чтение онлайн

на главную - закладки

Жанры

Дневная звезда. Рассказ о нашем Солнце

Миттон Саймон

Шрифт:

Гамма-детектор, установленный на этом спутнике, зарегистрировал в гамма-спектре две сильные линии. Одна из этих линий может быть обязана процессу аннигиляций электрона и позитрона, при котором образуются два фотона с одинаковой энергией. Другая линия, соответствующая большей энергии излучения, может быть связана с процессом синтеза протона и нейтрона, при котором образуется дейтрон. Обнаружение этих линий показало, что в солнечных областях большой активности имеют место ядерные реакции (другими словами, уничтожение электронов и синтез протон-нейтронных пар). Поэтому наличие лития и бериллия на Солнце может вполне объясняться ядерными реакциями в атмосфере. Эти элементы могут образоваться в возмущенных и вспышечных областях, где протоны ускоряются до высоких энергий. В некоторых редко встречающихся звездах (но не на Солнце) спектроскописты обнаружили линии, которые выдают присутствие технеция, радиоактивного вещества с периодом полураспада около 200 тыс. лет.

Он также, должно быть, образован в результате ядерных реакций в атмосферах звезд.

Фраунгоферовы линии несут еще и другую информацию помимо сведений о присутствии и относительном содержании химических элементов. Точное положение линии в спектре (точная длина волны) и ширина профиля зависят от магнитного поля, газового давления и скорости вдоль луча зрения наблюдателя. Влияние скорости приводит к хорошо известному эффекту Доплера: если источник поглощения движется по направлению к нам, линия сдвигается в сторону более коротких длин волн, то есть в синюю сторону; и наоборот, при движении источника от нас линия перемещается к более длинным волнам, то есть в красную сторону. Величина смещения пропорциональна скорости (для скоростей, намного меньших скорости света).

Измерения доплеровского смещения могут быть использованы для нахождения скорости вращения Солнца. Солнце не вращается жестко, как Земля. Полностью состоящее из газа, оно на экваторе вращается быстрее, чем на полюсе. Измерения доплеровского смещения показывают, что Солнце совершает полный оборот на полюсах примерно за 37 дней. Чем ближе к экватору, тем газ движется быстрее, и полный оборот на экваторе совершается примерно за 26 дней. Я привел значения периодов вращения относительно удаленных звезд. Мы на Земле измеряем другие скорости вращения, так как наша планета вращается вокруг Солнца в том же направлении, что и само Солнце. Поэтому измеряемые нами периоды вращения Солнца относительно Земли меняются от 40 дней на полюсе до 27 дней на экваторе. Если сравнить эти значения с приводимыми в других источниках, то они могут показаться несколько завышенными. Большинство авторов приводят значения периодов вращения, основанные на измерениях движений солнечных пятен. Как мы увидим выше, в пятнах огромную роль играет магнитное поле, поэтому они не могут служить надежным индикатором «реального» периода вращения. Если Солнце действительно имеет быстро вращающееся ядро, то магнитное поле и солнечные пятна будут двигаться быстрее.

В результате спектроскопического изучения скоростей в 1960 г. было сделано еще одно важное открытие. Было обнаружено, что солнечная атмосфера «дышит» с хорошо выраженным средним периодом, равным 5 мин. Скорости, связанные с этим колебанием атмосферы, составляют около 0,5 км/с (больше 1500 км/час). Сразу же под конвективной зоной газ периодически поднимается и опускается, проходя за каждый период вертикальное расстояние, примерно равное 50 км. Что за погода была бы на Земле, если бы ее атмосфера совершала также прыжки каждые 5 минут! Слой атмосферы над конвективной зоной обладает собственной резонансной частотой для звуковых волн, подобно органной трубе. Было высказано предположение, что волны давления, или звуковые волны, образуются в конвективной зоне на определенных частотах, совпадающих с резонансными частотами слоев, лежащих сразу же под фотосферой. Таким образом, волны раскачивают фотосферу, заставляя ее то подниматься, то опускаться.

Я уже рассказывал о колебаниях, обнаруженных Генри Хиллом. Эти колебания проникают к самому центру Солнца. С другой стороны, пятиминутные колебания являются резонансными для внешних слоев. Сопоставление этих двух типов колебаний дает астрономам еще один способ заглянуть внутрь Солнца.

Исследование фотосферы и других слоев атмосферы Солнца может проводиться чрезвычайно эффективно при помощи узкополосных фильтров. Эти фильтры пропускают без заметного поглощения излучение в очень узком интервале длин волн, центрированном на определенной спектральной линии. Тем самым они выделяют излучение, посылаемое каким-нибудь одним элементом. Для выделения узкой спектральной полосы в этих фильтрах используется эффект интерференции. Фильтр такого типа представляет собой диагностический инструмент большой важности. Поскольку температура в атмосфере меняется с высотой, то на разных уровнях основными источниками линий поглощения (и иногда линий излучения) будут различные элементы. Поэтому можно изучать излучение определенных слоев. Таким образом, можно сбрасывать «маски» с Солнца.

Посмотрим, как можно, например, выделить хромосферу. Розовый свет этого слоя, хорошо видимый невооруженным глазом только во время затмений, создается главным образом излучением первой спектральной линии бальмеровской серии водорода. Эта линия имеет длину волны 656,3 нм. Фильтр, прозрачный только в интервале 656,25—656,35 им, выделит эту линию. В фотосфере она одна из самых темных, с чрезвычайно сильным поглощением, поэтому фотосфера через фильтр совсем не видна. Пройдет только свет, излучаемый водородом в хромосфере. Таким путем мы можем получить фотоснимки этого слоя, несмотря на то что простым глазом он виден только во время затмения. Кроме водородной линии часто для исследований структуры и активности хромосферы используют линию ионизованного кальция 393,4 нм.

Структура яркости хромосферы, видимая через фильтры, называется хромосферной сеткой. Она соответствует очертаниям глубоко расположенных конвективных ячеек, называемых также супергрануляционными. Сетка совпадает с областями усиленного магнитного поля. Подобно очертаниям земных облаков, сетка непрерывно меняется, характерное время ее жизни около одного дня.

Рис. На снимке в крыле H-линии водорода (636,30 + 0.08 нм) хорошо видны спикулы по краям ячеек супергрануляции. Маленькие яркие пятнышки — Основания спикульных «розеток» в фотосфере. На переднем плане в центре — небольшая активная область. Темные точки соответствуют поглощению в вершинах петель. (Обсерватория Сакраменто-Пик, США.)

Если же мы будем рассматривать солнечный диск в красном свете линии водорода или в синей линии ионизованного кальция, то при замене фильтров мы можем увидеть также и фотосферную сетку. Она совпадает с крупномасштабной структурой хромосферы. На фотоснимках, полученных через фильтры с высоким пространственным разрешением, видна очень разнообразная и все время изменяющаяся структура — видны поры, волосики и бородавки солнечной кожи. Множество тонких темных линий, похожих на листочки травы, образуют на поверхности завитки и кружки. На солнечном диске они выглядят темными, а на краю Солнца на фоне темного неба — светлыми. Солнечники пользуются разными названиями для описания явлений солнечной дерматологии. Темные линии называются фибриллами или волоконцами, а их яркие двойники на лимбе — спикулами. Спикулы расположены в нижней хромосфере главным образом на границе супергранул. Внешне спикулы похожи на струи, пламя или горящую изгородь. Каждая спикула живет от 2 до 10 мин, затем на ее месте появляется новая. На «Скайлэбе» было получено много тысяч фотоснимков спикул и сеточной структуры верхней хромосферы. Этот верхний хромосферный слой имеет температуру около 70 000 К. В него вкраплены ощетинившиеся ряды спикул, высота которых над поверхностью достигает 25 000 км. На снимках в ультрафиолете, полученных на «Скайлэбе», на солнечной полярной шапке видны гигантские спикулы высотой 40 000 км и шириной, в два раза превышающей размеры Земли. Эти спикулы существовали около часа. Они являются одним из проявлений вспененной структуры хромосферы, из которой вещество может выплескиваться со скоростями, превышающими 150 км/с.

Теперь я хочу описать невидимую составляющую атмосферы — солнечное магнитное поле. Магнитное поле Солнца измеряет особый прибор, называемый магнитографом. Физический принцип, положенный в основу этого прибора, связан с возмущением электронной структуры атома магнитным полем. В результате энергетические уровни атомов расщепляются, образуя тонкую структуру. На спектре отдельные линии видны расщепленными на отдельные близко расположенные составляющие. Кроме того, излучение расщепленных линий поляризовано. Путем определенной комбинации фильтров поляризованные линии могут быть выделены, а их относительные интенсивности измерены. В результате могут быть определены напряженность и направление магнитного поля. В настоящее время такие измерения проводятся систематически при помощи магнитографов, а измеряемые параметры магнитного поля представляются либо в виде электронных сигналов, либо изображений на фотопленке или на экранах телевизионных трубок и мониторов.

Рис. На магнитограмме, полученной с помощью солнечного телескопа Мак-Мас, видны области положительной (белые) и отрицательной (темные) полярности магнитного поля. Видна большая группа солнечных пятен (справа внизу), близкая к распаду. Сильное магнитное поле на поверхности связано с активными областями на Солнце; это области, в которых сильное магнитное поле из недр Солнца проникает на поверхность. (Национальная обсерватория Китт-Пик, США.)

Солнечное магнитное поле имеет очень сложную структуру. На Земле ситуация относительно проста: наша планета имеет постоянное магнитное поле, являющееся дипольным (как у магнитного бруска) с двумя магнитными полюсами. Магнитное поле Земли постепенно меняет свое направление, и за несколько сотен тысяч лет сменит его на обратное. Но день ото дня или даже на протяжении годов ничего особенного не происходит. Геофизики полагают, что магнитное поле Земли генерируется механизмом типа динамо в жидком металлическом ядре Земли. Поле Солнца имеет сложную структуру и меняется непрерывно. Более того, магнитное поле Солнца примерно каждые 11 лет «переворачивается», что является одним из проявлений почти регулярного цикличного характера изменений на Солнце.

Поделиться:
Популярные книги

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Лорд Системы 11

Токсик Саша
11. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 11

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Восход. Солнцев. Книга V

Скабер Артемий
5. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга V

Сумеречный стрелок 6

Карелин Сергей Витальевич
6. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 6