Дневная звезда. Рассказ о нашем Солнце
Шрифт:
Новейшее подтверждение длительных промежутков спада солнечной активности следует также из исследований содержания в прошлом тяжелого радиоактивного изотопа углерода, известного под названием углерод-14. Этот изотоп входит в состав двуокиси углерода земной атмосферы, которая, поглощаясь растениями и деревьями, становится частью их древесной ткани. Когда спокойны как «погода на Солнце», так и его магнитное поле, интенсивность потока заряженных частиц, которые носят название космических лучей и постоянно пронизывают всю нашу Галактику, у Земли больше. Если Солнце магнитоактивно — на нем много пятен, и возросшее магнитное поле до некоторой степени экранирует Землю от галактических космических лучей. Космические лучи, проникая в нашу атмосферу, при своем столкновении с другими атомами воздуха создают углерод-14. В конечном счете, меньшая солнечная активность и более слабое магнитное поле будут соответствовать большему количеству углерода-14 из-за того, что в этом случае увеличивается число столкновений космических
Факты, подтверждающие реальность маундеровского минимума, а также убедительные свидетельства о более ранних понижениях солнечной активности, были получены из исследований исторических описаний и астрономических трактатов Востока. Эта работа была, в частности, проведена двумя английскими астрономами — Дэвидом Кларком и Ричардом Стефенсоном. Хотя в европейских источниках нет почти никакого упоминания о солнечных пятнах до Галилея, иначе обстоит дело на Востоке, откуда до нас дошла целая россыпь наблюдений. В чем причина такого различия? В Европе ученые того времени считали, что Солнце совершенно, и поэтому сама возможность существования солнечных пятен исключалась на основании теоретических (точнее, догматических) предпосылок. На Востоке это ограничение на оригинальную мысль не было господствующим, и, как следствие этого, существует множество живописных и поэтических упоминаний о наблюдавшихся невооруженным глазом солнечных пятнах. Вот примеры, взятые из переводов Кларка и Стефенсона: «Солнце было ослепительно красным, как пламя. На диске его был виден трехногий ворон. Его очертания были резкими и отчетливыми. Через пять дней он исчез» (352 г.н.э.). «На восходе Солнца и перед самым закатом на диске его было видно темное пятно размером с куриное яйцо; через четыре дня оно исчезло» (579 г.н.э.). Это прекрасный пример того, насколько легче пятна наблюдаются невооруженным глазом тогда, когда Солнце находится вблизи горизонта и светит сквозь темную дымку. Восточные описания за период в 1500 лет содержат много живописных оценок размеров пятен: «подобно сливе», «величиной с финик», «размером с монету» (28 г. до н.э.), или «черный туман, подобный летящей сороке». Эти характеристики не содержат никакой количественной оценки, тем не менее группа в виде летящей сороки (188 г. н.э.) существовала в течение нескольких солнечных оборотов («...через несколько месяцев он постепенно исчез»), так что она, должно быть, была громадной.
Восточные записи, по-видимому, указывают на два любопытных спада активности продолжительностью примерно в 200 лет. Один, в течение которого не было зарегистрировано невооруженным глазом ни одного солнечного пятна, продолжался от 600 г.н.э. до 800 г.н.э.; другой, во время которого лишь дважды наблюдались пятна, — с 1400 г.н.э. до 1600 г.н.э. Интересно, что период в 20 лет, предшествующих 1400 г.н.э., содержит множество сообщений о солнечных пятнах, что говорит о том, что солнечная астрономия в то время процветала. Кроме этих двух подозрительных пауз существуют еще три более короткие, которые своим происхождением, возможно, обязаны скорее отсутствию энтузиазма наблюдателей, чем реальному отсутствию пятен. Действительно же выдающейся особенностью больших спадов активности является их совпадение с соответствующими максимумами содержания углерода-14 в атмосфере. Еще один спад, с 1280 до 1350 г.н.э., также сопровождается возрастанием содержания углерода-14; это отклонение от нормы называется малым средневековым минимумом. Спад с 1400 г.н.э. до 1660 г. н.э.— минимумом Шпёрера, а тот, что следует за изобретением телескопа — маундеровским минимумом.
Открытие продолжительных периодов, свободных от солнечных пятен, примерно за два тысячелетия солнечных наблюдений подрывает уверенность в том, что дневная звезда имеет регулярный 11-летний цикл. Несомненно, действует другой заметный эффект — эффект, который может «выключать» пятна и уменьшать магнитное поле. Это явление подтверждается исследованиями содержания углерода-14 в ископаемых остатках растений и в особенности в кольцах деревьев. Дополнительное подтверждение следует из более косвенных наблюдений: в тех случаях, когда мала активность, протяженность короны во время солнечного затмения уменьшается. Во время маундеровского минимума (в реальности которого можно теперь не сомневаться) было отмечено также заметное отсутствие полярных сияний, которые, как мы теперь знаем, являются индикаторами сильных магнитных бурь на Солнце. Все говорит о том, что Солнце — не прогнозируемая переменная звезда, какой ее привыкли считать астрономы, а звезда, поведение которой подвергается значительным непредсказуемым изменениям. Согласно предположению Эдди, в настоящее время Солнце, возможно, приближается к большому максимуму в двадцать втором или двадцать третьем столетии.
Исследование древних рукописей с упоминанием солнечных пятен, очевидно, сохранит свое значение и в будущем. В настоящее время мы не знаем, почему солнечный цикл нерегулярен, хотя и знаем, что это действительно так; нет у нас и достаточно убедительных представлений о том, какое действие изменения активности могут оказывать на интенсивность излучения Солнца и, следовательно, какое действие они оказывают, если вообще оказывают, на погоду Земли.
Уже во время затмений было замечено, что размеры короны меняются с солнечным циклом. Корона, будучи относительно компактной и однородной в минимуме, в солнечном максимуме значительно больше и имеет сложную структуру. Когда на Солнце много пятен, корона характеризуется многочисленными длинными лучами, которые выглядят подобно лепесткам цветка. Корона также значительно ярче в максимуме. Во время маундеровского минимума наблюдатели описали корону как небольшое слабое свечение. Но лишь через несколько лет, в 1715 г. наблюдатель в Кембридже дал первое приемлемое описание короны и лучей (стримеров). В солнечном максимуме корона представляет собой поистине захватывающее зрелище. В минимуме истинная корона может даже полностью поблекнуть, остается лишь кольцо света, образующееся в результате рассеяния солнечного света пылью межпланетного пространства. От солнечного минимума к максимуму плотность частиц в короне возрастает вдвое, а температура — примерно на 20%.
Во время затмения случайный зритель, а в эру телевидения и наблюдатель у экрана телевизора могут увидеть не только корону, но и протуберанцы. Существует несколько типов этих прекрасных образований, но лишь некоторые из них непосредственно связаны с активным Солнцем. Наблюдателям Солнца протуберанцы известны уже много столетий. В далеком 1239 г. во время затмения в короне была видна «горящая дыра»; по всей вероятности, это был гигантский протуберанец. Протуберанцы, по-видимому, упоминались и летописцами России в средние века. Во время затмения 2 мая 1733 г. Б.Вассениус в Гётенбурге в Швеции видел три или четыре протуберанца, о которых он говорит как о красном пламени; он считал эти явления облаками в атмосфере Луны. Любопытно, что все эти наблюдения были полностью забыты, так что астрономы были удивлены, когда во время затмения 8 июля 1842 г. некоторые из них заново открыли протуберанцы, которые они интерпретировали как горы на Солнце.
Значительный прогресс был достигнут к концу XIX столетия с изобретением фотографии и спектроскопии. Спектры, полученные во время затмения 1868 г., выявили в протуберанцах яркие эмиссионные линии. С тех пор протуберанцы правильно объясняют как светящиеся облака газа, лежащие высоко над поверхностью Солнца. Между прочим, именно во время этого затмения была открыта яркая спектральная линия, которую нельзя было связать с излучением какого-либо из известных тогда атомов, вследствие чего ее приписали новому солнечному элементу — гелию.
Рис. Протуберанцы во время солнечного затмения.
Что же такое все-таки протуберанец? Самым простым, хотя и не особенно научным, определением протуберанцев является следующее: протуберанцы — это структурные образования, которые напоминают пламя или штору, когда они наблюдаются на солнечном лимбе, как, например, во время солнечных затмений. Однако не все образования такого вида — протуберанцы, некоторые из них являются вспышками, о которых мы расскажем позднее. Несколько более научным будет утверждение о том, что протуберанцы — это холодные и плотные массы вещества в горячей короне. Они принимают множество различных форм, не меняющихся в течение интервала от нескольких месяцев до нескольких часов.
В прошлом гелиофизики предполагали, что протуберанцы представляют собой напоминающие фейерверк мощные выбросы вещества, исторгнутые из фотосферы. Однако современная фотосъемка, позволяющая проследить развитие протуберанца в ускоренном темпе, показывает, что во многих протуберанцах холодное вещество постоянно течет из короны в фотосферу.
Гелиофизики подразделяют все протуберанцы на два вида — активные протуберанцы и спокойные протуберанцы. Эта классификация существует с 1875 г. Названия активных протуберанцев — сёрдж (сплошной выброс), спрэй (выброс в виде струи из пульверизатора), петельный и эруптивный протуберанец — связываются с перемещающимися с высокой скоростью мощными крупномасштабными движениями вещества. Краткое рассмотрение некоторых из этих типов протуберанцев дает нам представление об их разнообразии.
Корональные облака висят в короне; вещество из них стекает в активные области нижележащей фотосферы. Обычно они существуют день или два и расположены на высотах в несколько десятков тысяч километров. Протуберанцы типа коронального облака по своим размерам, как правило, значительно больше Земли. Одновременно с корональными облаками могут наблюдаться явления типа коронального дождя, которые представляют собой излучающее вещество, стекающее вдоль искривленных силовых линий магнитного поля в фотосферу и ее активные области. Капли коронального дождя падают вниз со скоростями 50—100 км в секунду (100 000 миль в час). Не все протуберанцы выбрасываются высоко в корону; протуберанцы типа «холм», которые легче всего наблюдать вблизи солнечного лимба, являются низко-лежащими образованиями.