Дневная звезда. Рассказ о нашем Солнце
Шрифт:
Примерно в 80 километрах над континентами и океанами начинается слой нашей атмосферы, называемый ионосферой. Ионосфера может простираться вплоть до высоты 1000 км. В этой области коротковолновое излучение Солнца, а также естественное космическое излучение (высокоэнергичные частицы, приходящие к нам из областей Вселенной, находящихся далеко за пределами Солнечной системы) взаимодействуют с атомами и молекулами атмосферы. Ультрафиолетовое и рентгеновское излучение, высокоэнергичные частицы обладают энергией, достаточной для того, чтобы выбить электроны из атмосферных атомов и молекул и превратить их в свободные частицы. Поэтому эта часть атмосферы ионизована; она состоит из электрически заряженных атомов и молекул, а также свободных электронов. Область ионосферы богата кислородом и имеет высокую температуру—свыше 1000 К. Но воздух здесь столь разрежен, что, вопреки этой высокой температуре, он ничего не нагревает; температуру следует рассматривать лишь как меру скорости движения ионов и электронов. Так как Солнце является основным источником ионизующего излучения, разнообразные измеренные характеристики ионосферы меняются с изменением степени активности Солнца. Когда на
До ракетного века ионосферу можно было исследовать лишь с помощью радиоволн. Однако в настоящее время, в эру спутниковых трансконтинентальных телевизионных передач телефонной и радиосвязи, легко забыть, что когда-то радиопередачи на большое расстояние полностью зависели от ионосферы. Так как эта область содержит много свободных электронов, она является хорошим проводником электричества. вследствие чего радиоволны с большой длиной волны отражаются от нее, как и от металлического экрана. Таким образом, радиосвязь с пунктами, находящимися за горизонтом, осуществляется за счет отражения радиоволн от нижней поверхности электропроводящей ионосферы. Такая связь причиняет довольно много неудобств, потому что ионосферный слой меняется в течение дня и зависит от времени года и уровня солнечной активности.
Именно ионосфера в основном не пропускает космическую радиацию (частицы, рентгеновское и ультрафиолетовое излучение), весьма опасную для человеческой жизни. Иногда мы говорим, что ионосфера защищает нас от вредного воздействия солнечной радиации. Хотя верхняя атмосфера и обеспечивает эту защиту, важно сознавать, что сложная сегодняшняя жизнь на Земле развивалась из более простых форм в среде, подвергавшейся очень слабому воздействию ультрафиолетового и рентгеновского излучения. Если бы ионосфера хуже защищала нас от внешних воздействий, жизнь, вероятно, развивалась бы иначе и организмы уже на стадии своего возникновения вынуждены были бы выработать у себя лучшую систему защиты от воздействия Солнца. Действительно, существуют простые примеры такого приспособления: темнокожие расы возникли в тропиках и темный цвет тела приобрели в силу необходимости защищаться от тех ультрафиолетовых лучей, которые не были поглощены воздухом уже ранее. Светлокожие люди могут приобрести темную пигментацию, подвергнув свою обнаженную кожу воздействию сильного солнечного света, но, если Вы — светлокожий, Вы, вероятно, на своем горьком опыте убедились, что стать темным можно лишь через несколько дней! Из-за того что жизнь развивалась под этим защитным покровом, мы не обладаем никакой естественной защитой от прямого воздействия Солнца. По этой причине и по ряду других необходимо, чтобы как космический корабль, так и одежда путешествующих в космосе имели специальный защитный экран.
Доза облучения, получаемая экипажами сверхзвуковых самолетов, летающих на очень больших высотах, должна непрерывно контролироваться медицинским персоналом. Пассажиры подвергаются меньшему риску даже в периоды высокой солнечной активности, так как они совершают значительно меньше высотных путешествий.
После большой солнечной вспышки резко возрастает число высокоэнергичных частиц в окрестности Земли. Частицы, обладающие самой высокой энергией, — это протоны, выбрасываемые из Солнца со скоростью, близкой к скорости света. При сильной вспышке часть активной области действует подобно ускорителю частиц или установке для расщепления атомного ядра. Эти релятивистские протоны достигают Земли почти в то же время, когда мы обнаруживаем вспышку с помощью наших телескопов. Они вторгаются в атмосферу и с большой силой сталкиваются с атомами. При этом возникают нейтронные ливни, которые обнаруживаются с помощью наземных инструментов. Мощная солнечная вспышка вызывает увеличение скорости счета нейтронов на уровне Земли в десять — двадцать раз. Эти нейтроны не причинят Вам вреда, но вот протонам, движущимся со скоростью света, не потребуется много времени для того, чтобы уничтожить Вac мучительной смертью. По этой причине за поведением Солнца обычно и ведется столь тщательное наблюдение, когда астронавтам необходимо выполнить какую-то работу непосредственно в космическом пространстве или на Луне, в то время как они защищены одними лишь скафандрами.
Солнце и его меняющееся излучение ответственны за некоторые из явлений, мешающих радиолюбителям. В качестве лишь одного примера приведем затухание на коротких радиоволнах. Это — внезапное прекращение приема радиопередач на коротких волнах. Оно происходит тогда, когда Солнце вызывает повышенную ионизацию в самом нижнем слое ионосферы, который и поглощает сигнал. На очень низких частотах отражающие свойства ионосферы значительно лучше, поэтому низкочастотные электромагнитные волны, генерируемые во время естественных гроз, легко преодолевают большие расстояния. Это приводит к значительному росту регистрируемого числа гроз, треск от которых в виде атмосфериков принимается радиоприемником.
Выше атмосферы и ионосферы чрезвычайно существенно влияние Солнца на ту неосязаемую магнитную оболочку — земную магнитосферу, которая как броня защищает нашу планету от непрерывной бомбардировки ее атомными частицами солнечного ветра. Магнитосфера является результатом взаимодействия собственного магнитного поля Земли с магнитным полем и электрическими токами, порождаемыми солнечным ветром.
Начнем с рассмотрения магнитного поля Земли. В настоящее время поле, регистрируемое на поверхности Земли, может быть легко смоделировано в предположении о том, что где-то более или менее в центре нашей планеты находится магнитный диполь (стержневой магнит в виде железного бруска). На самом деле внутри ее, конечно же, нет никакого постоянного железного магнита: поле, по-видимому, генерируется и поддерживается электрическими токами, текущими внутри жидкого ядра Земли, но на поверхности и вне ее оно подобно полю стержневого магнита. Магнитный диполь Земли наклонен к оси ее вращения примерно на 11° и отстоит от действительного центра Земли приблизительно на 500 километров. В результате северный магнитный полюс находится в Гренландии, а южный — в Антарктиде. В нынешние времена напряженность поля уменьшается довольно медленно с постоянной скоростью. Если так будет продолжаться и дальше, примерно через 2000 лет поле обратится в нуль. Из исследований реликтового магнитного поля, зафиксированного в горных породах, мы знаем, что напряженность и направление геомагнитного поля изменялись на протяжении всего геологического периода жизни Земли. Магнитное поле Солнца меняет свое направление на противоположное каждые 11 лет вследствие той перестройки, которую испытывает динамо. Внутри Земли свойства магнитного поля изменяются значительно медленнее и, по-видимому, не являются регулярными.
Магнитное поле, измеренное в любой точке на поверхности Земли, складывается из собственного поля Земли и магнитного поля, связанного с Солнцем и тем веществом, истекающем из Солнца, которое при своем движении наталкивается на Землю или обтекает ее. Так как неистовое Солнце может меняться в течение минут, напряженность или направление измеряемого магнитного поля не являются строго постоянными.
Очень заметно меняется горизонтальная компонента поля, когда происходит сильное уменьшение его напряженности. Эти внезапные резкие спады напряженности поля, более известные под красочным названием «геомагнитных бурь», могут продолжаться несколько дней. В течение всего этого времени чувствительный магнитный компас ведет себя настолько неустойчиво, что его показания могут казаться ошибочными. Сейчас мы уже знаем, что эти бури не вызваны какими-то внезапными изменениями внутри нашей собственной планеты. Напротив, виновником является Солнце, так как флуктуации поля (и стрелки компаса) обусловлены приходом к Земле высокоскоростных потоков солнечной плазмы, выброшенных во время большой солнечной бури. Активные области могут существовать на Солнце в течение более чем одного солнечного оборота. В этом случае связанная с ними геомагнитная буря также может повториться снова через двадцать семь суток, составляющих полный оборот Солнца вокруг своей оси относительно Земли. Большие геомагнитные бури связаны также и с возмущениями в ионосфере, которые вызывают временное прекращение приема радио- и телевизионных передач, так как и бури, и возмущения в ионосфере определяются по существу одними и теми же солнечными явлениями.
Поскольку солнечный ветер постоянно обтекает нашу планету, он создает полость, заключающую внутри себя геомагнитное поле, которое в противном случае простиралось бы далеко в космическое пространство. По сравнению с самой Землей магнитосфера велика. Со стороны, обращенной к Солнцу, ее граница отстоит от Земли примерно на десять земных радиусов. Существует внешний пограничный слой, называемый магнитопаузой, толщиной примерно 100— 200 км. С ночной стороны нашей планеты магнитосфера очень сильно вытянута — на 1000 земных радиусов — подобно хвосту кометы. Фактически она незаметно сливается с межпланетным магнитным полем. На этой стадии наших рассуждений, возможно, будет полезным представить себе магнитосферу в виде окружающего Землю магнитного скелета. Сразу же за границей магнитосферы существует еще другая, особая область взаимодействия, называемая магнитослоем — тело поверх скелета. Магнитослой — это область пространства, где частицы солнечного ветра обтекают магнитосферу. В саму магнитосферу частицы почти не проникают. На переднем крае магнитослоя, обращенного к Солнцу, существует стоячая ударная волна. Она напоминает ударную волну, или тот звуковой удар, который сопровождает сверхзвуковой самолет. Обычно, когда обладающая магнитным полем планета находится внутри потока солнечного ветра, ударный фронт возникает из-за того, что ветер обтекает планету со скоростью, большей скорости звука в ветре. Это в точности та же физическая ситуация, что и в случае ударной волны, возникающей, когда самолет движется быстрее скорости звука в воздухе. Одной из особенностей этой магнитной ударной волны вблизи Земли является то, что она того типа, который очень трудно создать в лаборатории: бесстолкновительная гидромагнитная ударная волна.
Запущенные в дальний космос ракеты «Пионер-10 и -11» и космический корабль «Вояджер» проходили мимо Юпитера. Эта планета обладает значительно более протяженной, чем у Земли, магнитосферой. Полеты позволили получить независимую информацию о природе планетных магнитосфер. У Сатурна также есть магнитное поле, простирающееся далеко в космическое пространство.
Ту часть магнитосферы, которая обращена в направлении от Солнца, называют по-разному: «геомагнитный хвост», «магнитосферный хвост» или более просто «хвост магнитосферы». Хвост этот, скорее, напоминает две прижатые друг к другу трубки. В верхней трубке магнитное поле направлено к Солнцу, в нижней — от Солнца. Там, где две трубки соприкасаются, находится нейтральная область, так как противоположно направленные поля в большей или меньшей степени взаимоуничтожают друг друга.
Конечно, магнитосфера не является совершенно непроницаемым барьером — частицы отклоняются от своего пути вблизи Земли (мы уже упоминали о тех эффектах, которые они вызывают в ионосфере). Движение заряженных электрических частиц в дипольном магнитном поле Земли таково, что частицы с соответствующей энергией могут захватываться этим полем и почти бесконечно двигаться вокруг Земли в радиационных поясах. Внутренний радиационный пояс был открыт и его форма была выведена Дж.А.Ван Алленом в 1958 г. С помощью простых детекторов заряженных частиц на борту первого американского искусственного спутника «Эксплорер-1» не удалось зарегистрировать частицы выше 1000 км. Позднее лабораторные испытания и дальнейшие спутниковые наблюдения показали, что нулевой отсчет в действительности был всего лишь результатом того, что детекторы были полностью зашкалены в радиационных поясах. Внутренний пояс заполнен главным образом протонами, в то время как более протяженный внешний пояс содержит также и электроны.