Эксперимент продолжается
Шрифт:
Теперь даже пятикласснику становится любопытно: что за чудеса спрятаны в этих мудреных и вчера еще просто недоступных книгах? С техникой чтения плоховато? Не беда - это ведь в классе только приходится читать, когда каждое твое слово слышат все. А дома? Дома можно и по-спотыкаться. Зато какая радость обуревает вчерашнего тугодума, когда задача оказывается побежденной! Умение решать побуждает к чтению. И это уже прорыв магического кольца! Теперь уже развитие ребенка идет одновременно по двум направлениям. Совершенствование техники чтения поднимает на новый качественный уровень процесс
Нелишне отметить еще одно неизбежное следствие.
Как уже было сказано ранее, ребята очень редко записывают в тетради краткие условия задач. На доске их что ни день, то десяток, а в тетрадях не каждый день одна. Не приводит ли это к иждивенчеству и нарушению требования "о привитии некоторых навыков краткой записи условий задач"? В том-то и дело, что нет. Формы кратких записей разнообразных по своей структуре условий задач позволяют учителю импровизировать, рождают у ребят устойчивое ощущение свободной мысли, а графическая подача логических связок помогает представить задачу зримо, наглядно, вызывая тем самым желание создавать подобные схемы самостоятельно, без оглядки на каноны. Задачи становятся чем-то сродни шутливым рисункам, которые так любят делать дети, а рисунки у каждого свои. Разные. Отчего бы не пофантазировать, придумывая графический образ задачи? Это должно не только разрешаться, но и всячески поощряться. И неважно, какой образ выбирает ученик, отыскивая способ решения. Решение вот оно. Ответ верный. Проверка следует незамедлительно. А краткая запись, какой бы простой, замысловатой или оригинальной она ни была, в конце остается за кадром. И все же по прошествии некоторого времени, вызывая ребят к доске и диктуя им условие задачи для краткой записи (это тоже случается), учитель вдруг обнаруживает в ней все те элементы, которые на протяжении недель и месяцев ненавязчиво, в совершенно необязательной форме предлагал детям.
Так рождается и осмысляется еще один специальный прием, который, пополнив арсенал новой методики, обогащает ее воспитательные и обучающие возможности. А завтра будут новые классы, новые ученики и возникнут новые проблемы, которые потребуют поиска способов их решения. Эксперимент не закончен. Эксперимент продолжается. А значит, до новой встречи, читатель.
1 Лук А. Н. Юмор, остроумие, творчество.
– М., 1977. С. 129.
2 Сандлер А. Узелки на память: Записки реабилитированного. Магаданское книжное издательство, 1988. С. 6.
3 Амонашвили Ш, Учитель у доски // Учительская газета. 1988,12 июля.
4 Наука и человечество: Международный ежегодник,- М., 1966. С. 256.
5 Дуденко Р. И. Учебное пособие по оборудованию и охране труда в. общественном питании.- М., Экономика, 1987
6 Наглядные средства в преподавании философии, - М., 1976, С. 14.
7 Продуктивность такого подхода к обучению доказана и П. М. Эрдниевым. См., например: Эрдниев П. М. Обучение математике в начальных классах: Опыт обучения методом укрупненных дидактических единиц.- М., 1979.
8 Власова Т. А., Певзнер М. С, О детях с отклонениями в развитии.- М., 1973. С. 57
9 Выготский Л. С. Избранные психологические исследования,-М., 1955. С. 448
10 Эти игры описаны в книге Н. В. Студеницкого "Веселый отдых" (М., 1956).
11 О том, что случилось дальше, см.: Блон Ж. Великий час океанов. М., 1978. С. 52.
12 Леонов А.А., Соколов А.К., Космические дали: Альбом.- М., 1972
13 Здесь и далее в скобках указан номер зачетной книжки студента и средний балл по школьным предметам естественно-математического цикла до начала эксперимента (сводные данные классного журнала)
14 Школа - колыбель народа: Передовая статья // Известия. 1988, 16 августа
15 См.: Дынкин Е. Б., Молчанов С. А., Розенталь А.Л., Топыго А.К. Математические задачи,- М, 1965, С, 10
16 См.: Глязер С. Познавательные игры,- М., 1951, С. 122
17 См.: Шаталов В.Ф. Опорные конспекты по астрономии,- Киев, 1974
18 Тульчинский М.Е. Сборник качественных задач по физике.-М., 1965. С. 14.
19 Капитанчук В.А. Оригинальные способы преподавания К. А. Тимирязева и рациональное их использование// Общедидактические проблемы методов обучения.- М., 1977, С. 305-306.
20 Онищук В.А., Типы, структура и методика урока в школе - Киев, 1976. С. 9.
21 Петровский А. В. Популярные беседы по психологии.- М., 1977. С. 64.
22 Там же. С. 49.
23 Каменский Я. А. Избранные педагогические сочинения. Т, П.- М., 1939, С. 200.
24 Гумилев Л.Н. Поиски вымышленного царства.- М., 1970. С.
448.
25 Крутецкий В. А. Психология математических способностей школьников.М., 1968. С. 197.
26 См.: Перышнин А. В., Родина Я, А. Физика 6-7.- М.: Просвещение, 1986, С. 303
27 См.: Кимбар А., Качинскай А. М., Заикина Н. С. Сборник самостоятельных и контрольных работ по физике,- Минск, 1975.
28 Виленкин Н. Я., Чесноков А. С., Шварцбурд С. И. Математика-5.- М.: Просвещение, 1987. С. 200: "В двух бочках было 725 л бензина. Когда из первой бочки взяли 1/3 имевшегося там бензина, а из второй взяли 2/7 имевшегося там бензина, то в обеих бочках стало бензина поровну, Сколько литров бензина было в каждой бочке первоначально?"
29 Погорелое А. В. Геометрия-6-10.: Просвещение, 1987, С. 63-64
30 Кривонос И. Ф., Сластенин В. А. Программы педагогических институтов: Теория и методика творческого освоения передового педагогического опыта.- М. 1988.
31 Викол Б. А., Величко Е. В., Викол Л. В., Триш Н. И. Мето-дические рекомендации по решению задач повышенной трудности в курсе математики VI-VIII классов,- Славянок: СГПИ, 1987.
32 Капралов Г. Кресло в первом ряду // Правда, 1978, 4 мая.
33 Иваницкая Г. М. Главное - формирование личности // Русский язык и литература в средних учебных заведениях УССР, 1987, No 2.
34 Вопросы психологии. 1978, No 2
35 Вопросы психологии. 1978, No 2.