Электроника?.. Нет ничего проще!
Шрифт:
Л. — Я полностью согласен с тобою, что, только проявив максимум внимания, можно проследить за работой умножителя. Поэтому я освобождаю тебя от изучения делителя, который отличается еще большей сложностью и который действует как бы наощупь, подбирая результат методом вычитания.
Н. — Мне не хотелось бы тебя огорчать, Любознайкин, но, по правде говоря, эти цифровые вычислительные
Л. — Ты сразу указал на очень важный вопрос возможностей использования цифровых вычислительных машин. Добавляя к изображенной на рис. 133 схеме умножителя дополнительные каскады, т. е. удлиняя сдвигающие регистры и увеличивая число других элементов, можно наращивать возможности умножителя.
Н. — Согласен, но одновременно ты увеличишь и его сложность.
Л. — Совершенно верно, но ты не заметил одной особенности; каждый раз, когда я прибавляю один «ломтик» к сдвигающим регистрам и один элемент g, устройство приобретает способность работать с числами на один знак длиннее, т. е. с числами в 2 раза большими; иначе говоря, добавляя один каскад, я удваиваю возможности машины. Поэтому цифровая вычислительная машина, катастрофически разорительная при работе с числами, состоящими из 4 или 5 знаков, становится очень выгодной при работе с числами, состоящими из 20 или 30 знаков. Так, например, двоичному числу из 30 знаков соответствуют десятичные числа порядка миллиарда, а результат умножения получается исключительно быстро. Короче говоря, цифровые вычислительные машины в основном предназначены для получения высокой точности при действиях с числами, состоящими из большого количества знаков.
Н. — Если я правильно понял, ты хочешь сказать, что возможности машины растут по закону геометрической прогрессии, а количество ее элементов увеличивается по закону арифметической прогрессии?
Л. — О боже! Хороший мне урок! Полагая, что ты всегда с трудом понимаешь мои объяснения, я на этот раз слишком упростил свой язык. Ты совершенно прав.
Н. — Но объясни мне, пожалуйста, почему ты говорил мне о высокой точности, я бы скорее сказал о больших числах, так как двоичные числа не имеют дробей.
Л. — Первый раз слышу! Ты можешь свободно написать двоичное число с запятой и с цифрами после этой запятой. Так, например, число 11,011 означает 3 целых (одна 2 + одна 1), а справа от запятой мы видим нуль, означающий, что дробная часть числа не содержит половины, второй после запятой стоит цифра 1, означающая наличие четверти, и следующая цифра 1 показывает, что имеется еще одна восьмая. Иначе говоря, расположенная справа от запятой часть числа означает следующее: нуль половин + одна четверть одна восьмая, т. е. три восьмых. Как ты видишь, здесь, как и в десятичной системе счисления, можно говорить о дробной части числа, отделяемой от остальной части числа запятой.
Н. — Вот система счисления, которая должна особенно понравиться англичанам. Традиционный английский дюйм легко делится на половинки, четверти, восьмые и т. д. При такой системе счисления относительно просто говорить о 17/64 дюйма.
Л. — Признаюсь, что это никогда не приходило мне в голову. В самом деле можно было бы подумать, что двоичную систему обозначения дробей придумали, чтобы доставить удовольствие тем, кто пользуется этими замысловатыми дюймами и их невероятными долями. А теперь, чтобы у тебя сложилось общее представление о цифровых вычислительных машинах, нам стоит сказать несколько слов о системах памяти.
Н. — Что за любопытное
Л. — Запоминающие устройства в вычислительных машинах выполняют ту самую роль, что и бумага, которой мы пользуемся при выполнении расчетов. Во время работы часто приходится записывать промежуточные результаты, чтобы продолжать проводимое вычисление или использовать их позднее. В вычислительной машине благодаря использованию двоичной системы счисления нам нужно лишь зафиксировать в интересующих нас каналах наличие или отсутствие сигнала, что соответствует нулям или цифрам 1. Необходимо сделать так, чтобы результат операции (или данное в условии число) можно было записать.
Н. — Но об этом ты мне уже говорил. Эту задачу можно очень хорошо выполнить с помощью сдвигающего регистра.
Л. — Совершенно верно; сдвигающий регистр содержит триггеры — они могут использоваться в запоминающей системе. В зависимости от состояния, в котором они находятся (опрокинутый триггер или в состоянии покоя), сигналы, даваемые ими, могут соответственно представлять цифры 1 или нули.
Н. — Так, значит в качестве запоминающего устройства мы воспользуемся сдвигающими регистрами?
Л. — Иногда так и делают, но в большинстве случаев такое решение оказалось бы ненужной роскошью. Вполне достаточно простых триггеров. На один из их входов можно подавать под- лежащие запоминанию импульсы, получившие такой импульс триггеры переключатся и останутся в нем до тех пор, пока их не вернут в исходное состояние, т. е. «сбросят на нуль».
Но я хочу рассказать тебе в нескольких словах о более простых запоминающих устройствах. Существует весьма интересный класс запоминающих систем, в которых используются маленькие кольца из ферритов (так называют материалы, состоящие из железа, кислорода и некоторых металлов, которые изготовляются наподобие керамики).
Н. — Ну вот теперь-то я, наконец, услышу объяснение загадочных «тороидов с прямоугольной петлей», о которых я часто слышал, но так толком и не понял, что это такое.
Л. — Именно о них и пойдет у нас речь. Можно сделать ферриты, способные сохранять намагниченность в том или другом направлении при воздействии на них магнитным полем достаточной напряженности.
Предположим, что мы взяли маленькое кольцо, которое я изобразил для тебя на рис. 134…
Рис. 134. Ферритовое кольцо, служащее элементом запоминающего устройства благодаря своей способности намагничиваться в одну или в другую сторону.
Н. — Хм, если у тебя нет с собой лупы, тебе придется немало потрудиться, чтобы рассмотреть или найти это кольцо!
Л. — В этом-то и заключается одно из важнейших достоинств системы; малые размеры кольца позволяют сделать запоминающие устройства, содержащие в ограниченном объеме огромное количество элементов. Продернем через отверстие маленького кольца провод и пропустим по нему ток. Если ток превышает некоторое значение (например для нашего кольца 0,7 а), вся система оказывается намагниченной в определенном направлении; при этом силовые линии магнитного поля замыкаются в кольце.