Чтение онлайн

на главную

Жанры

Элементы комбинаторики и теории вероятностей
Шрифт:
1.5. Сочетания без повторений.

Сочетанием без повторений называется такое размещение, при котором порядок следования элементов не имеет значения.

Всякое множество X состоящее из m элементов, называется сочетанием из n элементов по m.

Таким образом, количество вариантов при сочетании будет меньше числа вариантов размещений.

Число сочетаний из n элементов по m обозначается.

(2.3).

Пример 6.

У одного человека 7 книг по математике, а у второго – 9. Сколькими способами они могут обменять друг у друга две книги на две книги.

Решение:

Так как порядок следования книг не имеет значения, то выбор 2ух книг – сочетание. Первый человек может выбрать 2 книги

способами. Второй человек может выбрать 2 книги

. Значит всего по правилу произведения возможно 21*36=756 вариантов.

1.6. Решение типовых задач.

Задача 1. Ученик должен выполнить практическую работу по математике. Ему предложили на выбор 17 тем по алгебре и 13 тем по геометрии. Сколькими способами он может выбрать одну тему для практической работы?

Решение: X=17, Y=13

По правилу суммы X U Y=17+13=30 тем.

Задача 2. Имеется 5 билетов денежно-вещевой лотереи, 6 билетов спортлото и 10 билетов автомотолотереи. Сколькими способами можно выбрать один билет из спортлото или автомотолотереи?

Решение: Так как денежно-вещевая лотерея в выборе не участвует, то всего 6+10=16 вариантов.

Задача 3. Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневые переплеты. Сколькими способами он может это сделать?

Решение: Имеется 12 книг и 3 цвета, значит по правилу произведения возможно 12*3=36 вариантов переплета.

Задача 4. Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?

Решение: В таких числах последняя цифра будет такая же, как и первая, а предпоследняя – как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX, где Y и Z -любые цифры, а X – не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.

Задача 5. Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец?

Решение: два юноши не могут одновременно пригласить одну и ту же девушку. И варианты, при которых одни и те же девушки танцуют с разными юношами, считаются разными, поэтому:

Возможно 360 вариантов.

Задача 6. Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно),

если на нем всего 10 цифр.

Решение:

Так как кнопки нажимаются одновременно, то выбор этих трех кнопок – сочетание. Отсюда возможно вариантов.

Задача 7. У одного человека 7 книг по математике, а у второго – 9. Сколькими способами они могут обменять друг у друга две книги на две книги.

Решение:

Так как порядок следования книг не имеет значения, то выбор 2ух книг – сочетание. Первый человек может выбрать 2 книги способами. Второй человек может выбрать 2 книги. Значит всего по правилу произведения возможно 21*36=756 вариантов.

Задача 8. При игре в домино 4 игрока делят поровну 28 костей. Сколькими способами они могут это сделать?

Решение:

Первый игрок делает выбор из 28 костей. Второй из 28—7=21 костей, третий 14, а четвертый игрок забирает оставшиеся кости.

Следовательно, возможно.

2.Упражнение.

Задача 1. У мамы 2 яблока и 3 груши. Каждый день подряд она выдает по одному фрукту.

Сколькими способами это может быть сделано?

Ответ: 10ю способами.

Задача 2.Предприятие может предоставить работу по одной специальности 4 женщинам, по другой – 6 мужчинам, по третьей – 3 работникам независимо от пола. Сколькими способами можно заполнить вакантные места, если имеются 14 претендентов (6 женщин и 8 мужчин)?

Ответ: 1680ю способами

3.Основные понятия теории вероятностей.

Теория вероятностей – раздел высшей математики, изучающий закономерности массовых случайных явлений.

Совершенно очевидно, что в природе нет ни одного физического явления, в котором не присутствовали бы в той или иной мере элементы случайности.

Как бы точно и подробно ни были фиксированы условия опыта, невозможно достигнуть того, чтобы при повторении опыта результаты полностью и в точности совпадали. Случайные отклонения неизбежно сопутствуют любому закономерному явлению. Тем не менее, в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления его упрощенную схему, «модель», и предполагая, что в данных условиях опыта явление протекает вполне определенным образом. При этом, из бесчисленного множества факторов, влияющих на данное явление, выделяются самые главные, решающие; влиянием остальных, второстепенных факторов просто пренебрегают. При использовании этой схемы для решения любой задачи, прежде всего, выделяется основной круг учитываемых условий и выясняется, на какие параметры задачи они влияют; затем применяется тот или иной математический аппарат; таким образом, выявляется основная закономерность, свойственная данному явлению, и дающая возможность предсказать результат опыта по его заданным условиям [2,3].

123
Поделиться:
Популярные книги

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

У врага за пазухой

Коваленко Марья Сергеевна
5. Оголенные чувства
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
У врага за пазухой

Кодекс Охотника. Книга V

Винокуров Юрий
5. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.50
рейтинг книги
Кодекс Охотника. Книга V

Тринадцатый IV

NikL
4. Видящий смерть
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Тринадцатый IV

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Средневековая история. Тетралогия

Гончарова Галина Дмитриевна
Средневековая история
Фантастика:
фэнтези
попаданцы
9.16
рейтинг книги
Средневековая история. Тетралогия

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна

Провинциал. Книга 5

Лопарев Игорь Викторович
5. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 5

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Убивать чтобы жить 4

Бор Жорж
4. УЧЖ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 4

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII