Энциклопедия головоломок
Шрифт:
44.
Что находится ближе всего к кошке, которая сидит на подоконнике?
45.
Гладиатору в Древнем Риме, осужденному на смерть, предоставили последний шанс, прежде чем бросить на съедение львам. Он должен был за час добраться до центра лабиринта. Начало пути отмечено на рисунке стрелочкой. А вы бы справились с таким заданием?
46.
Когда
47.
Эти охотники ищут птиц и зверей, спрятавшихся в листве деревьев. Всего их должно быть 23.
А вы можете их найти?
48.
Существует только 1 способ соединения 3 точек последовательными движениями карандаша по прямой линии — так, чтобы карандаш вернулся в исходную позицию. Есть 3 способа соединения 4 точек, расположенных в вершинах квадрата, и 4 способа соединения вершин пятиугольника. А сколько способов соединения 6 точек (вершин шестиугольников) вы можете найти?
49.
Сколько кубиков нужно, чтобы сложить такую фигуру?
50.
Каждый вечер четыре волшебника задают друг другу вопрос: «Что вы снимаете в последнюю очередь, собираясь ложиться спать?» А вы знаете ответ?
51.
Какой из этих трех кубиков можно сложить из развертки кубика, изображенной вверху?
52.
Надя сделала 6 набросков портрета Василия Ивановича. Который из ее рисунков принципиально отличается от всех остальных?
53.
Конный завод приобрел по меньшей мере 3 лошадей, никто толком о них ничего не не знал. Слышали, что:
а) все лошади гнедые;
б) одна или больше лошадей гнедой масти;
в) одна или больше лошадей не гнедые.
Какие два из этих трех утверждений являются оба верными, но одновременно не могут быть оба неверными? А какие два утверждения могут быть оба неверными, но не могут быть верными?
54.
Эти 6 карандашей образуют фигуру — правильный шестиугольник. Возьмите еще 3 карандаша и попробуйте изобразить с их помощью фигуру с шестью гранями.
55.
Возьмите 15
56.
Головоломка «Убирайся с земного шара» Сэма Лойда, которую он запатентовал в 1896 г., является одной из самых знаменитых, основанных на оптическом обмане. К карточке с изображением земного шара, которая свободно вращается вокруг центральной оси, прикреплены фрагменты 13 фигур китайских воинов. Недостающие фрагменты их фигур — на другой карточке, которая неподвижно зафиксирована под первой. Медленно вращайте верхнюю карточку, и один из китайцев полностью исчезнет из поля зрения. Который из них исчез и куда он делся?
57.
Как попасть в центр зала с таким орнаментальным узором на полу?
При этом нельзя пересекать черные линии. Возможно ли это в принципе?
58.
Новая телефонная сигнализация, обеспечивающая безопасность с помощью системы «два-шесть», оснащена замечательным кнопочным устройством: оно имеет 4 круглых, 4 овальных и 4 квадратных кнопки, беспорядочно пронумерованных цифрами от 1 до 12. Однако поднять тревогу можно, нажав одновременно или на все кнопки одного горизонтального или вертикального ряда, или на все кнопки одной формы. Как пронумерованы кнопки?
59.
У этого тукана клюв длиной 6 см. Сколько таких туканов можно поместить в пустой клетке размером 2x2x2 м?
60.
Как показано на рисунке, 4 костяшки домино могут быть расположены таким образом, что количество очков на них представляет собой пример на умножение. Имея в распоряжении набор из 28 костяшек домино, попробуйте расположить их так, чтобы получилось 7 примеров на умножение. (Пустые клеточки домино означают ноль и не могут стоять перед всем числом.)
61.
Эти 3 ящика сложены в нужном порядке, но не в том месте. Водителю автокара велели переложить их на верхнюю полку. Он знает, что нельзя класть больший ящик на меньший, а его автопогрузчик может за 1 раз поднять только 1 ящик. Он перегрузил ящики на верхнюю полку, сделав всего 7 движений. Каким образом?
62.
Определите, какие буквы на этом рисунке связаны между собой?