Энциклопедия современной военной авиации
Шрифт:
Воздухозаборники сверхзвуковых самолетов
ВД применяются в комбинации с маршевой двигательной установкой. В 60-е
При использовании в двигательной установке ПМД поворот вектора тяги осуществляется в плоскости симметрии самолета, при этом сопла поворачиваются вниз на 90°. В зависимости от тяговооруженности может происходить укороченный или вертикальный взлет.
В настоящее время на вооружении военной авиации (в США и Великобритании) находятся два типа СВВП: многоцелевой истребитель «Харриер» (в нескольких модификациях), оснащенный ПМД, и военно-транспортный «Оспри» с поворотными двигателями.
Использование ПМД обеспечивает улучшение маневренных характеристик СВВП — уменьшение радиуса виража, увеличение интенсивности торможения, благодаря возможности использования поворота вектора тяги двигателя в полете На СВВП в дополнение к аэродинамическим рулям имеется газодинамическая система управления, позволяющая самолету маневрировать на режимах висения, взлета и посадки. Для увеличения управляющих моментов струйные рули разнесены по концам крыла и фюзеляжа. Для СВВП характерно увеличение относительной массы силовой установки и уменьшение относительной массы полезной нагрузки. Можно увеличить полезную нагрузку СВВП при взлете «по-самолетному» — с коротким разбегом. После израсходования в полете топлива и сброса боевой нагрузки тяговооруженность самолета возрастает и может обеспечить вертикальную посадку.
Двигатель смолета F-15
Управление вектором тяги открывает перспективы более простого управления самолетом, особенно на малых скоростях, а также снижение заметности и расхода топлива, благодаря возможности отказаться от вертикального оперения.
В некоторых современных военно-транспортных самолетах — Ан-72, С-17 — для увеличения подъемной силы крыла применяют энергетическую механизацию крыла (ЭМК), основанную на эффекте Коанда. При обдуве верхней (АН-72) или нижней (С-17) поверхности крыла реактивной струей, она поворачивается вслед за отклоненным закрылком. Появляется вертикальная составляющая тяги двигателей. Кроме того, на крыле при этом возникает дополнительная аэродинамическая подъемная сила (эффект суперциркуляции).
«Щит» для самолета
На всех этапах развития военной авиации параллельно шел процесс совершенствования средств ПВО. Конструкторам авиационной техники приходится постоянно учитывать этот фактор и предпринимать соответствующие меры. И сейчас, как в прошлом, бронируются кабины экипажа штурмовых самолетов многократно резервируются системы управления самолетом и двигателями, чтобы уменьшить заметность, на поверхность планера наносятся хитрые камуфляжи. Введен даже специальный термин «стелс» —
Для уменьшения радиолокационной заметности применяют малоотражающие формы планера, радио-поглощающие материалы (РПМ) и усовершенствованное бортовое радиоэлектронное оборудование. Компоновка самолета, созданного по технологии «стелс», отличается плавным сопряжением элементов конструкции с определенной ориентацией плоских поверхностей и кромок, с тоннельными или утопленными воздухозаборниками с экранами и изогнутыми каналами для предотвращения радиолокационного облучения компрессора двигателя.
РПМ входят как в силовой набор планера (например, из таких материалов изготовлена часть обшивки некоторых самолетов), так и наносятся в виде краски или многослойного покрытия.
Сложной проблемой стала задача подавления излучения собственных бортовых радиоэлектронных станций (РЭС), так как любые радиоэлектронные устройства служат источниками излучения и любая антенна переизлучает часть падающей на нее энергии. Выход в максимальном использовании пассивных оптических обзорно-прицельных и неизлучающих навигационных систем, в усовершенствовании средств радиоэлектронного подавления и уменьшении числа антенн.
Еще один диапазон, в котором возможно обнаружение цели за пределами визуальной видимости, это инфракрасное (ИК) излучение. На самолете можно выделить 3 главных источника теплового излучения: элементы двигателя, выхлопные газы и поверхности планера с аэродинамическим нагревом. ИК-заметность снижается экранированием горячих частей двигателя (например, на А-10 сопла снизу экранируются стабилизатором) или применением плоских сопел, уменьшающих сектор обзора внутреннего канала двигателя с задней полусферы; охлаждением и изменением направления выхода газов; применением присадок к топливу для уменьшения интенсивности ИК-излучения или изменения его спектра.
Самолетом, в котором комплексно применены технологии «стелс», является американский бомбардировщик с истребительным «именем» F-117. Он имеет конфигурацию, способствующую многократному переотражению электромагнитной энергии от облучающей РЛС в различных направлениях, чем достигается ее рассеивание. На самолете отсутствуют прямоугольные пересечения, играющие роль уголковых отражателей. Воздухозаборники двигателей имеют в сечении особый переменный профиль. На выходе газов в атмосферу у сопла каналы имеют вид тонких щелей, разделенных вертикальными перегородками. Подобная конструкция позволяет смешивать газы с холодным воздухом и уменьшать ИК-заметность.
Все вооружение размещено внутри фюзеляжа, почти нет наружных антенн, отсутствует бортовая РЛС. Дюралевая обшивка самолета покрыта с помощью клея специальной оболочкой в виде плоских панелей из ферритовых и ферромагнитных полимерных РПМ — всего шесть слоев Также применяются специальные краски и шпаклевки. На остекление кабины нанесено золотосодержащее покрытие, экранирующее от облучения РЛС. Самолет получился дорогим — 112,2 млн долларов стоит одна машина, но высокоэффективным. В ходе операции «Буря в пустыне» F-117 осуществили лишь 1 % от всех боевых самолето-вылетов авиации альянса, но при этом уничтожили 40 % всех важнейших целей.
Конечно, у подобных самолетов хуже аэродинамика, меньше скорость и дальность. Имеются ограничения по применению некоторых видов оружия. При использовании РПМ приходится покрывать самолет несколькими слоями с различными характеристиками и диапазонами радиопоглощения, что приводит к удорожанию и увеличению массы машины.
Снижения заметности можно добиться без отхода от оптимальной с точки зрения аэродинамики компоновки самолета в целом путем подбора профилировки воздушных каналов, снижения радиопрозрачности фонаря кабины, лучшей компоновки отсека антенны РЛС.