Энергия будущего
Шрифт:
В природе существует некая элементарная частица, которая называется отрицательным мю-мезоном. Егозаряд равен электронному, а масса в 212 раз больше. Если этот мю-мезон соединить, например, с дейтерием, то может образоваться новый атом, в котором электрон атома дейтерия будет заменен мю-мезоном. Поскольку масса мю-мезона в две сотни раз больше массы электрона, то вокруг ядра он будет вращаться по орбите, лежащей во столько же раз ближе к ядру, чем орбита электрона. Благодаря тому, что эта система нейтральна и очень мала, она может очень близко подойти к другому ядру дейтерия, лишенному электрона (иону), и образовать молекулярный ион дейтерия, в котором вокруг двух очень близко расположенных ядер дейтерия вместо электрона будет вращаться мю-мезон.
К сожалению, "потом" может не быть. Время жизни мю-мезона всего несколько миллионных долей секунды. Окончив свою "деятельность", он распадается на электрон и два нейтрино. Так что за отпущенное ему время он сможет инициировать синтез всего нескольких пар ядер. Выделившаяся при этом энергия составит малую долю той энергии, которую необходимо затратить на создание самого мю-мезона. Значит, такой синтез не имеет практической ценности для энергетики.
Что же показывают эти два примера "неудачной попытки" еще более эффективного и более легкого использования энергии ядра в энергетике? Возможно, пессимист скажет, что они подтверждают сказанное ранее: пока нет других, более эффективных способов высвобождения- энергии ядра. Оптимист ответил бы по-другому: наличие таких "почти пригодных" способов позволяет надеяться и показывает, что где-то рядом, пока еще скрытые от нас, существуют процессы, познав которые человек станет обладать еще большими запасами дешевой и нужной энергии. Надо только их искать. И ученые ищут.
Теоретики считают, что если получить уран в изомерном состоянии, то при делении, по-видимому, можно будет получить не 2,5, а, скажем, 5 свободных нейтронов. Почему это важно, мы увидим позже.
Теоретически показана возможность существования сверхплотных ядер. Пока трудно говорить о возможностях их использования, но стоит обратить внимание на то, что сверхплотные ядра должны обладать запасами внутренней энергии в тысячи раз большей, чем обычные ядра.
В энергетике, по-видимому, можно было бы использовать и ядра нейтронные, то есть состоящие почти из одних этих частиц. О такой возможности говорит теория.
КАК РАЗДЕЛИТЬ ЯДРО
Ценнейшее в жизни качество - вечно юное любопытство, не утоленное годами и возрождающееся каждое утро.
Ромен Роллан
В одном из номеров журнала "Иностранная литература" был напечатан памфлет "Законы Паркинсона".
В острой сатирической форме автор расскааал, Б частности, о заседании парламентариев, рассматривавших новые финансовые законопроекты. Около трех часов ушло на обсуждение такого "важного" законопроекта, как выдавать ли парламентариям в перерыве между заседаниями бесплатный кофе (стоимостью в несколько пенсов). По этому поводу почти каждый счел своим долгом высказать мнение потому, что вопрос этот был известен и близок каждому депутату. Другое дело - проведение законопроекта... о строительстве ядерного реактора (стоимостью в несколько миллионов фунтов стерлингов) . На это ушло меньше пяти минут, ибо высказываться не хотел никто. Не хотел? Вернее, не мог. Ведь для этого нужно обладать знаниями. А что такое ядерный реактор - парламентарии имели о нем самое общее представление.
В этом анекдоте есть доля правды. Как ни удивительно, но в век атомной энергетики и покорения космоса очень многие ничего или почти ничего не знают о ядерном реакторе, об атомной энергетике, которая гигантскими шагами входит в нашу жизнь. Может быть, причина этого в удивительно быстром развитии знаний ученых о тайнах атома? Может быть, это развитие настолько стремительное, что за ним не поспевает ясная и правдивая информация? А может быть, виновным является и сам ядерный реактор: ведь понимание процессов, происходящих при его работе, очень непростая вещь. В этом отношении он довольно парадоксален. Вот пример: чтобы сделать простейший реактор, не нужно знать почти ничего, кроме, пожалуй... рецепта, подобного рецепту, взятому из поваренной книги.
Выглядеть такой рецепт мог бы так. "Возьмите алюминиевый бак. Наполните его 20 литрами дистиллированной воды, засыпьте 3800 граммов уранилнитрата (уран с азотом), тщательно перемешайте смесь стальной ложкой. Затем быстро выньте ложку, и вы получите работающий ядерный реактор".
Конечно, это шутка. Однако в принципе именно так может выглядеть гомогенный (однородный) ядерный реактор на тепловых нейтронах. Но как, не имея опыта домашней хозяйки, а руководствуясь только рецептом, можно приготовить не обед, а лишь нечто с ним схожее, так, не зная принципов работы реактора, не имея необходимых контрольных приборов, можно получить бак с грязной водой, а если и реактор, то такой, которым невозможно управлять.
Хотя о существовании больших запасов энергии в ядре атома было известно очень давно, понадобилось несколько десятилетий исканий, расширения знаний о свойствах ядер атомов, длинная цепочка интересных, открытий, приведших к созданию ядерного реактора, - устройства, в котором освобождается энергия деления ядра.
Ядра со "знаком качества"
Чтобы разделить ядро и вызвать высвобождение внутренней энергии, нужно выбрать "инструмент", сравнимый с размером самого ядpav-ведь никто не станет разбивать грещшй opejc паровым молотом. Непригоден он и для разделения ядра. Его и не разбить таким инструментом.
Мы уже знаем несколько частиц, сравнимых с размером ядра. Перечислим их. Прежде всего это само же ядро. Затем нейтрон и протон. Пока достаточно. Они пригодны в качестве инструмента. А теперь стоит уточнить,, какими свойствами этот инструмент должен обладать.
Чтобы расколоть полено, разбить камень или распилить железную заготовкуг мало иметь остро отточенный топор,, удобный молоток или пилу, нужно еще затратить энергию. Нельзя забывать, что материалы бывают капризные: каждому нужна только "его" энергия - та, с помощью которой можно этот материал обработать.
Чтобы разделить ядро, нужно затратить энергию, различную для разных ядер.
При изучении строения атома и его ядра обычно возникает вопрос: почему ядро не разваливается само по себе? Ведь входящие в его состав протоны электрически заряжены, следовательно, они должны отталкиваться друг от друга с большой силой. Почему же этого не происходит? Объясняется это тем, что внутри ядра действуют еще так называемые внутриядерные силы, притягивающие друг к другу частицы ядра. Силы эти велики, но действуют только на очень близком расстоянии, поэтому их называют короткодействующими. Онито и компенсируют - гасят силы электрического отталкивания протонов и не дают ядру самопроизвольно распасться.
В пределах объема ядра составляющие его частицы находятся в беспрерывном движении. Если бы удалось добавить туда хотя бы немного энергии, то есть ввести ее избыточное количество, то частицы стали бы двигаться быстрее. Можно предположить, что они смогли бы преодолеть соединяющие их ядерные силы и "изнутри" взорвать, разделить ядро. Величину этой избыточной энергии (физики называют ее энергией возбуждения) можно рассчитать.
Если проделать эти вычисления, то окажется, что легче всего поддаются делению тяжелые ядра. Так, для урана-235 величина энергии возбуждения равна всего 5 миллионам электронвольт - 5 Мэв. (В своих расчетах физики предпочитают пользоваться этой единицей энергии. Один Мэв примерно равен 4-10^-17 килокалориям.) Для платины (атомный вес 195) величина возбуждения равна 40 Мэв, а для элемента с атомным весом 141 (празеодим) возрастет до 62 Мэв. Ядра тяжелых элементов самые неустойчивые. Достаточно лишь немного "подтолкнуть" такое ядро, то есть добавить небольшое количество энергии, как оно разделится.