Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Если теперь возобновить разговор об инструменте и энергии, то инструментом для деления атомного ядра могут быть, как уже говорилось, протоны, другие ядра или нейтроны. Попав в ядро, они должны иметь хороший запас энергии, то есть обладать большой скоростью. Этот запас должен быть не меньше той энергии возбуждения, о которой речь шла выше. Только тогда ядро перейдет в возбужденное состояние и произойдет его деление.

Для того чтобы протон или нейтрон обладали энергией 5 Мэв, необходимой, для деления урана-235, нужно, чтобы скорость их равнялась 30 тысячам километров в секунду.

Мы еще не обращали внимания на одно свойство частиц,

представляющих собой инструмент для деления ядра, - их заряд. А ведь протоны и ядра атомов - это заряженные частицы, и именно поэтому они как инструмент непригодны для деления ядра. При сближении, например, протона с ядром между ними будут действовать силы отталкивания. Преодолевая их, протон потеряет часть своей энергии и попадет в ядро таким обессиленным, что уже не сможет разделить ядро. Значит, энергия заряженных частиц-снарядов должна быть очень большой (вспомните термоядерный синтез), существенно больше энергии, необходимой для деления ядра.

Поэтому в качестве инструмента для деления предпочтение надо отдать незаряженному нейтрону. Пользуясь своей нейтральностью, он может свободно проникать в ядро; ему не надо преодолевать силы отталкивания. Чтобы разделить ядро, он должен только принести в него энергию возбуждения, и ее будет достаточно для этой "операции".

Остановимся еще на одном факте, имеющем громадное значение для осуществления реакции деления.

Когда шла речь о синтезе элементов, мы заметили, что если лишь присоединить нейтрон к ядру, то, поскольку это будет уже элемент с другим атомным весом, должна выделиться энергия, обусловленная изменением недостатка (дефекта) массы. В случае присоединения нейтрона к урану-235 она равна примерно 7 Мэв. Прежде чем выделиться из ядра, эта энергия переведет его в возбужденное состояние. Следовательно, "простое присоединение" нейтрона к ядру уже вносит в него энергию возбуждения, большую той, которая необходима для разделения элемента с атомным весом 235 (она равна, если помните, 5 Мэв), точнее, 236, так как после присоединения нейтрона атомный вес увеличился на единичку.

Отсюда вытекает, что нейтрон не должен обладать никакой начальной энергией, его не нужно разгонять до 30 тысяч километров в секунду, необходимо только, чтобы он как-то попал в ядро. Тогда оно придет в возбужденное состояние и с большой вероятностью разделится. А уж само деление приведет к выделению энергии гораздо большей. О ее величине мы уже говорили: для урана-235 она равна примерно 200 Мэв на ядро (20 миллионов килокалорий на грамм урана).

Под действием нейтронов, не обладающих начальной энергией, могут делиться не все ядра, а только те, у которых энергия возбуждения, необходимая для их деления, меньше 7 Мэв, то есть той энергии, которая выделяется при простом добавлении нейтрона к ядру.

Таких ядер известно немного. Их атомный вес должен быть близким к 235, и для них энергия возбуждения, вызывающая деление их ядер, составляет около 5 Мэв.

Действительно, платина (атомный вес 195) уже не подходит. Энергия возбуждения, необходимая для ее деления, равна 40 Мэв. Элемент с атомным весом 141 вообще невыгодно делить: энергия, которую необходимо затратить на его деление (62 Мэв), меньше энергии, обусловленной дефектом массы и выделяющейся при делении (48 Мэв). Значит, нужные элементы со "знаком качества" следует искать вблизи атомного веса 235. Они легко делятся и отдают большую энергию, чем тратится на их деление. Прежде всего это сам

уран с атомным весом 235, наиболее распространенный в природе, затем плутоний-239 и изотоп уран-233. Эти элементы называются делящимися.

Как это было

Последовательность шагов, которые мы делали, подходя к делению ядер, почти обратна историческому ходу событий. До 1938 года физики вообще не знали, что деление возможно. Лишь открыв это опытным путем, они объяснили природу данного явления: почему его легко осуществить с помощью нейтронов и трудно с помощью протонов. Вот как это происходило.

С 1919 года физики-экспериментаторы начали изучать ядра элементов, бомбардируя их-пучками летящих частиц: ядрами гелия (альфа-частицами), протонами.

При обстреле ядра влившаяся в него частица меняла его заряд и атомный вес. Первым человеком, осуществившим превращение ядра, был английский ученый Э. Резерфорд. Он наблюдал реакцию получения кислорода из азота при обстреле последнего ядрами гелия.

У многих исследователей потом возникла мысль о создании новых элементов, которых нет на земле. Начавшаяся серия опытов приносила массу новых сведений, одно открытие следовало за другим. Началась эта серия опытами французских молодых ученых Ирэн и Фредерика Жолио-Кюри. При бомбардировке бериллия ядрами гелия были обнаружены какие-то новые частицы. Д. Чедвик в Англии повторил опыты Кюри и показал, что эти новые частицы имели массу протона, но были лишены электрического заряда. Так были открыты нейтроны. Советским ученым Д. Иваненко и немецким физиком В. Гейзенбергом была выдвинута подтвердившаяся затем гипотеза о том, что нейтроны являются составной частью ядра.

В 1934 году Э. Ферми бомбардирует атомы вновь открытыми частицами нейтронами. Обстреливая ими уран, он получил новые радиоактивные ядра, которые принял за новые элементы, следующие в периодической таблице Менделеева за ураном.

Но лишь в 1939 году стало ясно, что в действительности происходит при обстреле урана нейтронами.

В конце 1938 года Ирэн Жолио-Кюри и югославский ученый Савич провели опыты по бомбардировке урана и обнаружили среди продуктов, возникших после бомбардировки, вещество, сходное с лантаном - элементом, весьма далеким от урана в таблице Менделеева.

Эти опыты были повторены О. Ганом и его сотрудником Ф. Штрассманом (Германия). Среди продуктов облучения они обнаружили барий и молибден и уже в январе 1939 года опубликовали это сенсационное сообщение.

Атомный вес бария 137, что означало, что его ядро содержит чуть более половины числа протонов и нейтронов ядра урана. Таким образом, было установлено, что ядро урана раскалывается на более легкие ядра, в числе которых ядро бария. Этот процесс назвали расщеплением ядра. Затем появился термин - деление.

Позже было установлено, что при делении урана-235 может образоваться до 30 пар различных элементов. Характер деления таков, что ядро распадается на равные половины или образует одно тяжелое и одно легкое ядра.

В дальнейшем опыты, поставленные Ф. ЖолиоКюри, показали, что при делении урана выделяется громадная энергия. При этом были обнаружены осколки урана на расстоянии трех миллиметров от места их деления, что свидетельствовало о ядерном взрыве. Ведь если сопоставить указанное расстояние с масштабом земного шара, то оно равносильно отбрасыванию осколков нашей планеты в случае ее взрыва на расстояние 400 миллионов миллиардов километров, то есть на половину диаметра нашей Галактики.

Поделиться:
Популярные книги

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Сердце Дракона. Том 10

Клеванский Кирилл Сергеевич
10. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.14
рейтинг книги
Сердце Дракона. Том 10

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Государь

Кулаков Алексей Иванович
3. Рюрикова кровь
Фантастика:
мистика
альтернативная история
историческое фэнтези
6.25
рейтинг книги
Государь

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Безнадежно влип

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Безнадежно влип

Магия чистых душ 3

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Магия чистых душ 3

Первый среди равных

Бор Жорж
1. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных