Энергия и жизнь
Шрифт:
Рассмотрим один из примеров. Шлаки и шламы цветной металлургии, а их накапливается несколько сот миллионов тонн ежегодно, могут повышать качество стройматериалов. Казалось бы, выход найден: отходы одного производства стали ценным сырьем для другого. Но увы, опасность вредного биологического действия отходов цветной металлургии отнюдь не уменьшается от того, что они входят в состав строительных блоков. Просто опасность появляется в другом месте. Канцерогенность и аллергенность кадмия, никеля и других тяжелых металлов остается, и стройматериалы, особенно в жилищном строительстве, с повышенным содержанием тяжелых элементов просто недопустимы.
Можно привести примеры «революционных» идей этого типа и в других областях, в частности попытки использовать почвы под видом орошения как место утилизации неочищенных промышленных и бытовых стоков. Емкость почвы гораздо выше емкости воды, но и ее очистка и восстановление тоже гораздо сложнее. Недаром академик ВАСХНИЛ В.В.Егоров [1985] назвал такие предложения «дичайшими». Такие примеры, к сожалению,
Ближайшей непосредственной задачей, стоящей перед человечеством, является интенсификация имеющихся и разработка новых путей и методов борьбы с загрязнением среды, включая активное очищение.
Наиболее существенным способом борьбы с загрязнением промышленного и индустриализованного сельского хозяйства является разработка специально создаваемых очистных сооружений, так называемых систем интенсивной очистки. Основную нагрузку в этих системах, особенно при очистке водных стоков, несут ассоциации микроорганизмов, способные утилизировать широкий спектр активных загрязнителей различного рода. При этом степень очистки особо ядовитых специализированных промышленных стоков с небольшим количеством ингибиторов сильного действия заметно возрастает, если используются специально отселекционированные штаммы микроорганизмов, способные инактивировать сильно ядовитые соединения. Однако, несмотря на высокие скорости метаболических процессов и широкие возможности регулирования обмена у микроорганизмов, практически невозможно организовать абсолютно полную очистку загрязнений в выходящих потоках жидкости, газов даже с учетом повышения степени замкнутости технологий. С приближением к полному очищению стоимость процесса очистки возрастает экспоненциально. Дополнительную доочистку, таким образом, приходится перекладывать на естественные, т. е. экстенсивные, процессы самоочищения в биосфере. Как уже неоднократно отмечалось, биосфера не справляется с ростом загрязнения и по ряду параметров происходит довольно быстрая его аккумуляция.
Эмпирически к настоящему времени нащупывается выход из очень сложной ситуации с растущим загрязнением среды. Он заключается в разработке промежуточных систем, играющих роль буфера между выходом интенсивной системы очистки и «входом» биосферы. Обычно это выделенный участок ранее существовавшей экосистемы, довольно большой по размерам, с ярко выраженной модификацией, произведенной человеком (например, в нашей стране мелиорированные лиманы на Черном море, рукава Волги, Дона, старицы Оби, Енисея с примыкающей территорией и т. д.). Увеличенный размер и уменьшенные скорости деструкции загрязнителей отличают такую сложную систему от интенсивных специализированных систем. Кроме того, такие буферные системы характеризуются разветвлением потоков, наличием циклов по ряду веществ и организацией биотического круговорота в гидро- и педосфере. Это сближает их с природными экосистемами, однако заданные функции самоочищения в них более специализированы и более интенсифицированы, чем в природе. Такие системы можно отнести к управляемым экологическим системам (УЭС), функционирование которых направлено на выполнение определенных функций, задаваемых человеком.
Сельское хозяйство, являясь одним из наиболее опасных загрязнителей окружающей среды, видимо, еще долго будет оставаться в этой неприглядной роли. Помимо эрозии почв почти по всей планете сельскохозяйственное производство широким потоком «распыляет» в биосфере специальные ядовитые соединения типа гербицидов и пестицидов. Увы, пока без таких соединений не обойтись, а химизация сельского хозяйства приносит большую выгоду. Выгода несомненна и сиюминутна, вред от применения пестицидов не столь очевиден, но, к сожалению, он долговременен. Мы знаем, как пестициды накапливаются в цепях питания, концентрируясь в организме человека в сотни тысяч и миллионы раз. Есть ли выход из создавшегося положения? Конечно, он связан с использованием биологических методов борьбы с вредителями. Эти методы имеют неоспоримые преимущества перед химическими. Вот главные: высокая избирательность действия, а следовательно, и безвредность для человека; возможность длительного существования действующего агента (например, растущей популяции организмов, паразитирующей на вредителе); меньшая вероятность появления устойчивых форм вредителя к патогенным организмам, чем к химикатам.
Биологические методы пока намного дороже, чем химические, и не столь эффективны, производство биологических препаратов не налажено в больших масштабах, но и эти затруднения не принципиальны. Как мы говорили, эти сложности имеют технологическую природу, а значит, преодолимы. В наше время наиболее перспективно использование комбинированных способов борьбы: химия + биология с постепенным и неотвратимым наращиванием вклада биологии.
Очень сходна ситуация с использованием гербицидов: и здесь возникают сложности с химическим загрязнением среды. Хотя применение гербицидов для безотвальной обработки почвы позволяет избегать эрозии (но энергетически недешево!), их накопление в окружающей среде грозит большими неприятностями. Эффект аккумуляции более опасен, так как гербицидов для полного уничтожения целых армий сорняков требуется во много раз больше, чем пестицидов против вредителей. И здесь выход — в переходе к биологической системе земледелия (это мы обсуждали в предыдущем разделе). Потребуются более высокая культура земледелия, строгое выполнение правил агротехники и другие очевидные вещи.
Большой интерес для будущего представляет нетрадиционная форма ведения сельского хозяйства. Современное сельское хозяйство потому и неэффективно и громоздко, что оно рассеяно по поверхности планеты, «размазано» по большим площадям. К настоящему времени разработано несколько схем гигантских биофабрик (биотронов) с почти замкнутыми экологическими системами и с практически безотходным производством.
Другой вариант развития нетрадиционных вариантов сельского хозяйства связан с заменой дефицитного животного белка на белок одноклеточных или соевых растений. Производство дрожжевого белка вышло на рубеж 1 млн т/год в 80-е годы и продолжает нарастать. Перспективы его производства высоки из-за чрезвычайно больших скоростей прироста биомассы, которые в тысячи раз выше, чем скорости прироста животного белка. И в то же время аминокислотный состав, особенно по квоте незаменимых аминокислот, может быть аналогичен составу животного белка. Но пожалуй, одно из главных преимуществ — возможность его наработки на непищевом сырье: это сопутствующие парафины нефти; отходы древесины и сельскохозяйственных растений; низкокалорийные для сжигания бурые угли, торфы и др. Одна из проблем, связанных с очищением микробного белка от избыточных нуклеиновых кислот, тоже может быть отнесена к разряду технологических, т. е. решаемых. Энергетическая стоимость готового продукта на основе белков микроорганизмов, пока еще довольно высокая, может быть снижена в несколько раз по сравнению со стоимостью белков говядины, производимой традиционными путями. То же относится и к выработке белка из бобовых растений. Поэтому в 90-е годы в ряде развитых стран планируется заменить 10–25% мясо-молочных продуктов растительными и микробными белками, по виду, вкусу и качеству близкими к изделиям, сейчас выпускаемым из молока и мяса.
Со второй половины нашего столетия возросла активность математического прогнозирования глобального развития эколого-экономических процессов на нашей планете. И это не удивительно. Очень резко поднялись темпы изменения лика биосферы в наше время. Каждый год конца нашего века в этом смысле стоит десятилетия его начала, столетия средних веков и тысячелетий палеолита. Поэтому необходимость количественных прогнозов очевидна. Быстрое развитие вычислительной техники позволило осуществлять расчеты динамики развития биосоциальных систем в глобальных масштабах. До сих пор мы могли изучать закономерности биосферы как уникального объекта главным образом в ретроспекции. Экспериментировать с биосферой мы не можем и не имеем права. Имитационные эксперименты на ЭВМ являются единственной возможностью системных исследований биосферы.
Первые попытки формализовать глобальное описание экологических процессов предприняты по инициативе «Римского клуба» — неофициальной организации, одним из создателей которой стал известный итальянский предприниматель Аурелио Печчеи. В первых докладах «Римскому клубу» были проанализированы модели развития общества и среды в многомерном фазовом пространстве, компонентами которого были производственные, социальные и экологические процессы (модели Форрестера и Медоузов). Если результаты расчетов по первым моделям показались обескураживающими, типа полной остановки роста экономики и снижения числа людей на планете, то в дальнейшем удалось выявить условия сбалансированного развития экологии и экономики. При этом совершенно необходимым требованием было существенное увеличение трат на охрану окружающей среды во всех вариантах положительных прогнозов (модель «ГЕЯ», СССР).
Не имея возможности проанализировать детально результаты прогнозов развития человечества в биосфере, коротко остановимся на одном из них, самом ужасном — глобальном термоядерном конфликте. С точки зрения действия энергетических принципов этот вариант не биологичен, т. е. противоречит тенденции постоянного роста энергетики и умощнения круговорота в живой природе, так как связан с глобальными разрушениями и уничтожением большого числа живых и промышленных объектов. Однако законы социального развития могут иметь свое, в том числе и трагическое для человечества, обоснование.