Энергия и жизнь
Шрифт:
Но гораздо более серьезным и угрожающим был энергетический кризис. Всем новым машинам нужны были мощные, постоянно действующие движители, независимые ни от положения, ни от сезона в отличие от ветряных и водяных колес. Идея надежного двигателя недаром занимала умы мыслителей того времени.
Своеобразным отражением энергетического кризиса являются многочисленные в то время попытки создать вечный двигатель. Видя кажущееся «самодвижение» воды и воздуха (реки, приливы — отливы, ветра), легко можно было представить, что хитроумная комбинация машин способна к вечному движению, а следовательно, и к постоянному совершению работы.
Естественно, что наибольшее число «изобретений» относилось к использованию энергии воды и воздуха. Среди них наиболее популярны комбинации спирального подъемника воды — архимедова винта и обычного водяного колеса, которые вращают друг друга; колесо, вращающееся под действием неуравновешенных грузов; и т. д. Попытки создания вечного двигателя крайне заманчивы. Они не прекращаются до сих пор, правда, уже на других сочетаниях
Выход из энергетического кризиса средневековья был найден с помощью приручения «движущей силы огня», использования перехода химической формы энергии в тепловую, применения силы сжатого пара. Это — третий этап развития энергетики человечества. И опять мы не знаем, когда была построена первая паровая машина. Может быть, это был эолопил Герона или одна из первых паровых пушек Архимеда. Хотя древние греки и были знакомы с действием паровых машин, но объяснения принципа их действия тогдашняя схоластическая наука дать не могла. Не была известна сущность происходящих при этом физических процессов (считалось, например, что воздух превращается в пар), а без этого создать серьезную, эффективно работающую машину было нельзя.
Только научная революция XVI–XVII вв., вызванная требованиями развивающихся капиталистических отношений, привела к возникновению опытной науки, сформулировавшей правила разработки и создания разнообразных энергетических движителей.
На стыке XVII и XVIII вв. были созданы первые длительно работающие паровые машины, вначале пригодные лишь для откачивания воды из шахт (одной из самых тяжелых задач того времени). Они были громоздкими и неэффективными, с к.п.д. не выше 0,3%! Фактически это были паровые насосы. Настоящая паровая машина непрерывного действия была разработана в Англии знаменитым изобретателем Джеймсом Уаттом во второй половине XVIII в. (Параллельно в России был разработан двухцилиндровый паровой двигатель умельцем-механиком с Урала Иваном Ползуновым, но со смертью автора изобретение было забыто.) В Англии, этой мастерской мира того времени, где две трети населения работали в промышленности, паровые машины распространились необычайно быстро; к началу XIX в., т. е. через 25 лет после изобретения Уатта, их насчитывалось более 1500, они заменяли работу 180 тыс. лошадей. За Англией поспешили континентальная Европа и Северная Америка. В России первая после двигателя И. Ползунова машина заработала на Урале в 1799 г. Паровая машина, по словам Энгельса, оказалась поистине интернациональным изобретением. И это неудивительно, так как она была единственным в то время средством решения проблемы энергетического кризиса. Паровые машины повышенного давления можно было поставить на колеса и получить самодвижущиеся по рельсам повозки; довольно быстро по рекам и внутренним водоемам пошли пароходы, а в 1838 г. Атлантический океан пересекли два парохода, использующие только паровую тягу. Таким образом, к середине XIX в. паровые машины практически везде пришли на смену естественным источникам энергии — воде и ветру. Наступил «золотой век пара», который, казалось бы, мог длиться очень долго. Но... чем больше возможностей, тем быстрее растут потребности. Быстрый количественный рост числа паровых машин, их непрерывные модификации (хорошая аналогия с ЭПЭР и ЭПИР в биологии) уже за хронологических полвека не смогли удовлетворять потребности в энергетических мощностях экспоненциально растущей экономики. Перечислим самые существенные недостатки паровых машин: низкий к.п.д. при увеличении числа и мощности машин приводил к громадному расходу топлива; передача движения от машины к станкам осуществлялась через целые системы трансмиссий, сложные и ненадежные; атмосфера городов с тысячами заводских дымовых труб становилась непригодной для жизни горожан.
В недрах XIX в. зрели новые способы преобразования и использования энергии, но только в XX в. электричество вступило в права основного энергодателя, энергопреобразователя и энергопереносчика. Существует рассказ о том, что когда Майкла Фарадея, открывшего явление электромагнитной индукции, спросили: «А зачем это надо?», он ответил: «Не знаю, но когда-нибудь вы это обложите налогом». Имелось в виду, что это явление будет широко применяться на практике. Но вряд ли и сам великий экспериментатор и все исследователи, изучавшие природу электрических и магнитных явлений, могли предвидеть, как широко войдет электричество в нашу экономику, в быт каждой семьи. Применение электричества резко повысило энергообеспеченность человечества, в том числе и удельную. Электрическая энергия имеет большие преимущества перед другими видами: она быстро и с малыми потерями передается на большие расстояния; может легко преобразовываться в другие виды энергии; к. п. д. электропреобразователей может быть очень высоким, вплоть до 100%. Источником ее может служить как энергия падающей воды, так и энергия органического топлива. Отметим, что около 80%
Интересно отметить, что и для пятого этапа развития энергетики, основанного на использовании атомной энергии, основным энергоносителем тоже является пар. Современная атомная и, возможно, будущая термоядерная электростанция — это типичные тепловые станции. В них тапка парового котла заменяется на атомный или термоядерный реактор, а «тепловое тело» — пар — остается. А это значит, что к. п. д. таких станций, как и ранее, не будет высоким. Характерно резкое критическое высказывание по этому поводу профессора А. Китайгородского: «...Сегодняшняя атомная электростанция напоминает мне телегу, которую движет великолепный восьмицилиндровый двигатель» (цит. по [Чирков, 1981, с. 75]). «Дедовские» способы превращения тепла в электроэнергию через посредство пара действительно резко тормозят развитие новых методов производства энергии в наше время. Вот почему в нашем веке остается невысоким вклад атомной энергетики в общую энергетику человечества, не более 5% по прогнозам к 2000 г., хотя ее экологическая безвредность очень привлекательна при безаварийной работе.
Заканчивая обзор развития энергообеспеченности человечества в его эволюции, обратим внимание на то, что к настоящему моменту человек использует и рассеивает энергию, в десятки раз большую, чем среднее млекопитающее его размера. Это означает, что рост энергетических показателей является одним из важнейших факторов в эволюции человека и развитие всех его технологий связано с совершенствованием энергетики. По воспоминаниям соратника К.Маркса В.Либкнехта, познакомившись с работой одного из первых электродвигателей и действием модели железной дороги, К.Маркс сказал, что теперь результаты необозримы: за экономической революцией должна последовать политическая, так как вторая служит только выражением первой (цит. по [Карцев, Хазановский, 1984, с. 135]).
9.2. Будущее человека и перспективы энергетики
Вопрос о будущем развитии энергетики человечества можно по праву считать одним из самых главных в настоящее время. Для этого имеются две основные причины. Во-первых, наше время можно считать переломным из-за близкого истощения сырья, накопленного в былых биосферах. Вскоре, действительно, мы уже не сможем паразитировать на несовершенствах круговоротов прошлых биосфер и будем должны побеспокоиться о более падежных (возобновляемых или имеющих большие запасы) источниках. Во-вторых, следует подумать о гармоническом «вписывании» человечества в глобальный круговорот, пока он не нарушен в его основе (об этом—подробнее в следующей главе). Под этим углом зрения мы и рассмотрим некоторые возможные варианты совершенствования энергетики человечества.
Рис. 14. Рост народонаселения и удельного энергопотребления в XX в. [Скалкин и др., 1981].
1 — народонаселение, млрд чел.; 2 — удельные энергозатраты (% к 1900 г.).
К теперешнему моменту разработано несколько вариантов прогнозов развития энергетики на период до конца века и более отдаленные времена. Все они сходятся в том, что рост энергетики будет наблюдаться в любом случае, несмотря на призывы к его ограничению. И характер этого роста, по крайней мере в ближайшем будущем, остается экспоненциальным. Несмотря на рост народонаселения (рис. 14), и это следует подчеркнуть особо, (удельные расходы (или производство) энергии все же будут возрастать опережающими темпами [Скалкин и др., 1981]. Человек с мощностью основного обмена около 100 Вт рассеивает в 50—100 раз больше энергии в результате развития техники и энергетики, и этот показатель явно возрастает.
Приведем данные прогноза развития энергетики на XXI в. (рис. 15). Если к концу XXI в. атомная и ядерная энергия станут основными в энергопотреблении человечества (на рис. 15 область 4 заштрихована), то конец XX в. будет характеризоваться главным образом еще применением органического топлива, накопленного в прошлых биосферах. Рассмотрим подробнее некоторые аспекты роста и изменения структуры энергетики.
Ископаемым топливом № 1 нашего времени является нефть. Производимые из нее бензин, керосин, дизельное топливо используются в большом числе энергетических машин в качестве основного горючего. Добыча нефти к концу XX в. может достигнуть громадных величин — до десятка миллиардов тонн. И хотя разведанные ее запасы растут, нет сомнения, что более чем на 100 лет ее не хватит. По оценкам экспертов, скорость извлечения нефти из земных глубин п миллион раз превышает возможные максимальные скорости ее накопления в прошлом. Все труднее добывать нефть из недр, все сложнее до нее добираться, да и доля ее экономически выгодного изъятия не превышает 30—60% от имеющейся. Падают и энергетические характеристики. Хотя еще Д. И. Менделеев говорил, что сжигать нефть — это «все равно, что топить ассигнациями».