Энергия, секс, самоубийство
Шрифт:
Я хотел написать книгу для широкой аудитории, не разбирающейся в науке вообще и в биологии в частности. Тем не менее пришлось предположить, что читатель знаком с основами биологии клетки, и иногда прибегать к специальной терминологии. Однако некоторые части книги могут показаться трудными для восприятия даже тем, кто с терминологией вполне знаком. Но прочитать их все же стоит. Очарование науки и тот особый восторг, который испытываешь, когда начинаешь что-то понимать, постигаются в борьбе с вопросами, на которые нет четких ответов. На многие вопросы, затрагивающие события далекого прошлого (миллиарды лет назад), вряд ли вообще возможно дать точные ответы. Тем не менее мы можем использовать те знания, которые мы имеем, или думаем, что имеем, для того чтобы сузить список возможных ответов. Ключи к разгадке разбросаны повсюду и иногда их находишь в самых необычных местах. Чтобы их найти, нужны некоторые познания в современной молекулярной биологии, отсюда и неизбежная сложность некоторых разделов. Имея в своем распоряжении эти ключи, мы можем вслед за Шерлоком Холмсом исключить некоторые варианты ответов и сосредоточиться на других. Как говорил великий сыщик: «Отбросьте все невозможное,
3
Артур Конан Дойл. Знак четырех / Пер. М. Литвиновой.
Краткое определение некоторых специальных терминов я поместил в глоссарий. Тем не менее перед тем, как продолжить, возможно, стоит немного рассказать об основах биологии клетки тем из читателей, кто не знаком с биологией вовсе. Живая клетка — это миниатюрная вселенная, простейшая форма жизни, способная к независимому существованию. Следовательно, именно она является базовой единицей биологии. Одна клетка может быть самостоятельным организмом (вспомним амеб или, если уж на то пошло, бактерий). Такие организмы называются одноклеточными. Организм многоклеточных состоит из многих клеток (в случае нас с вами их миллионы миллионов). Наука, изучающая клетки, называется цитологией, от греческого слова cyto — клетка (изначальное значение — сосуд, вместилище). Корень «цито» входит в состав многих терминов. Например, цитохромы — «цветные» белки в клетке, цитоплазма — внутренняя среда клетки (все, кроме ядра), эритроцит — красная клетка крови.
Не все клетки равны между собой, а некоторые значительно равнее других. Проще всего устроены бактериальные клетки. Даже разглядывая их в электронный микроскоп, трудно понять, что они собой представляют. Бактерии редко превышают несколько микрометров [4] в диаметре и обычно имеют форму шара или палочки. От окружающей среды они отделены прочной, но проницаемой клеточной стенкой, к которой изнутри прилегает тончайшая, но относительно непроницаемая клеточная мембрана толщиной несколько нанометров [5] . Бактерии производят энергию с помощью этой исчезающе-тонкой мембраны, поэтому ей и посвящена значительная часть нашей книги.
4
Микрометр (устаревшее название — микрон) — одна тысячная доля миллиметра.
5
Нанометр — одна миллионная доля миллиметра.
Бактериальная клетка, как и любая другая, заполнена цитоплазмой. Она имеет консистенцию геля и содержит (в виде раствора или взвеси) самые разнообразные биологические молекулы. Некоторые из них можно еле-еле разглядеть под микроскопом при максимальном увеличении (в миллионы раз). При таком увеличении цитоплазма выглядит шероховатой, как испещренное кротовинами поле с высоты птичьего полета. Прежде всего, среди этих молекул нужно назвать длинные извитые молекулы ДНК (носителя генетической информации), похожие на ходы сумасшедшего крота. Молекулярная структура ДНК — знаменитая двойная спираль — была открыта Уотсоном и Криком более полувека назад. Другие «шероховатости» — это крупные белки. Они едва заметны даже при таком увеличении и тем не менее состоят из миллионов атомов, организованных с такой безупречной точностью, что молекулярную структуру белков можно расшифровать при помощи рентгеноструктурного анализа. Это всё. Больше мы ничего особенно и не увидим, хотя биохимический анализ показывает, что бактерии, простейшие из клеток, на самом деле крайне сложны, и мы еще только начинаем понимать, как они устроены.
Мы с вами состоим из совсем других клеток. На клеточном «скотном дворе» они «равнее» многих других. Начнем с того, что они гораздо больше. Их объем иногда в сотни тысяч раз превышает объем бактериальных клеток. Внутри у них можно разглядеть очень многое. Там есть огромные стопки складчатых мембран, имеющих шероховатую поверхность, разнообразные пузырьки, содержимое которых отделено от остальной цитоплазмы, как в пакетиках для замораживания, а также густая разветвленная сеть волокон, обеспечивающих структурную поддержку и эластичность клетки, — цитоскелет. А еще там есть органеллы — органы клетки, выполняющие специализированные функции, подобно тому, как, например, наши почки выполняют функцию выделения. Но главное, в наших клетках есть ядро — задумчивая планета, царящая в клеточном микрокосме. Его поверхность, подобно лику Луны, испещрена «кратерами» (на самом деле мельчайшими порами). Клетки, имеющие такое ядро, называются эукариотическими. Это самые важные клетки на Земле. Без них мир был бы непредставимо другим, потому что все растения и животные, все водоросли и грибы, практически все живое, что можно увидеть невооруженным глазом, состоит из эукариотических клеток, и у каждой из них есть свое ядро.
В ядре находится дезоксирибонуклеиновая кислота (ДНК). У эукариот и бактерий эта макромолекула идентична по молекулярной структуре, но различается организацией на макроуровне. ДНК бактерий представляет собой длинную извитую замкнутую петлю. Сумасшедший крот рано или поздно приходит в исходную точку и получается одна кольцевая хромосома. В эукариотических клетках хромосом обычно несколько, и они не кольцевые,
Фрэнсис Крик, когда открыл структуру ДНК, тут же понял, как работает механизм генетической наследственности, и вечером объявил в пабе, что разгадал загадку жизни. ДНК — это матрица для сборки как самой себя, так и белков. Каждая из двух полинуклеотидных цепей двойной спирали служит матрицей для другой. Когда они расходятся, а это происходит во время деления клетки, каждая цепь предоставляет информацию, необходимую для сборки полной, двойной спирали. В результате получаются две идентичные копии. Информация, закодированная в ДНК, диктует «по буквам» молекулярную структуру белков. Это, говорил Крик, и есть «центральная догма» всей биологии — гены кодируют белки. Длинная телеграфная лента ДНК представляет собой последовательность всего лишь четырех молекулярных «букв» (нуклеотидов); так все наши слова и все наши книги состоят из сочетаний всего лишь 33 букв. Полная библиотека генов организма называется геномом, размер которого может достигать миллиарда «букв». Ген — по сути дела, код для «изготовления» одного белка — обычно состоит из тысяч нуклеотидов. Белок представляет собой цепочку субъединиц, которые называются аминокислотами. Порядок аминокислот определяет функциональные свойства белка, а последовательность букв в гене — последовательность аминокислот в белке. Мутация гена (изменение последовательности «букв») может привести к изменению структуры белка (а может и не привести, так как генетический код обладает некоторой степенью избыточности, или, выражаясь специальным языком, вырожденности, и одну и туже аминокислоту могут кодировать несколько разных комбинаций букв).
Белки — предмет особой гордости и славы жизни на Земле. Разнообразие их форм и функций практически бесконечно. И практически всё разнообразие жизни обязано своим существованием разнообразию белков. Благодаря белкам стали возможны все физические достижения жизни — от метаболизма до движения, от полета до зрения, от иммунитета до сигнальных систем. По своим функциям белки делятся на несколько больших групп. Одна из важнейших — ферменты. Они являются биологическими катализаторами и могут на несколько порядков повышать скорость протекания биохимических реакций при потрясающей специфичности к субстратам. Некоторые ферменты даже могут различать изотопы (разные формы одного и того же атома). Другие важные группы белков — это гормоны и их рецепторы, белки, отвечающие за иммунную систему, такие как антитела, белки, ДНК — связывающие белки, такие как гистоны, и структурные белки, образующие цитоскелет.
Генетический код инертен. Это огромное количество информации помещено в надежное хранилище — ядро, изолированное от протекающих в цитоплазме процессов; так, ценные энциклопедии хранят в библиотеках, а не штудируют бесконечно, скажем, на заводе. Для повседневной работы в клетке используются малоценные ксерокопии. Они сделаны из РНК. Структурные элементы этой макромолекулы похожи на структурные элементы ДНК, но она скручивается в виде одинарной, а не двойной цепи. Есть несколько типов РНК, и каждый выполняет свою функцию. Прежде всего, следует назвать информационную, или матричную РНК (иРНК, или мРНК), длина которой более или менее соответствует длине одного гена. Как и ДНК, иРНК состоит из последовательности нуклеотидов и представляет собой точную реплику генетической последовательности ДНК. Генетическая последовательность ДНК транскрибируется в несколько иную каллиграфию иРНК — шрифт меняется, но смысл предложения остается неизменным. Эта РНК — крылатый вестник. Она физически переходит из ядра в цитоплазму через поры в ядерной оболочке. Там она «швартуется» к какой-нибудь рибосоме — одной из многих тысяч фабрик сборки белков. По молекулярным меркам они огромны, по микроскопическим — крайне малы. Их можно еле-еле различить в электронный микроскоп на некоторых внутренних мембранах клетки, которым они придают шероховатый вид, а также в цитоплазме в виде мельчайших точек. Рибосомы состоят из смеси рибосомальных РНК и белков. Их функция — трансляция, перевод информации, которую принесла иРНК, на язык белков, то есть последовательность аминокислот. Транскрипция и трансляция контролируются и регулируются многочисленными специализированными белками, важнейшие из которых называются факторами транскрипции. Они регулируют экспрессию генов, то есть их конвертацию из пассивного кода в активный белок, у которого есть дела в клетке или за ее пределами.
Вооружившись этими базовыми познаниями в клеточной биологии, давайте вернемся к митохондриям. Эти клеточные органеллы («органы» клетки) специализируются на производстве энергии. Я уже упоминал, что митохондрии произошли от бактерий и до сих пор немного похожи на них (рис. 1).
Рис. 1. Схема строения митохондрии. Видны внутренняя и наружная мембрана; внутренняя мембрана складчатая, и эти многочисленные складки называются кристами. Именно в них протекает процесс клеточного дыхания