Энергия, секс, самоубийство
Шрифт:
Способностью потока крови подходить и отходить от капиллярного русла скелетных мышц объясняют высокий показатель степени (0,88) при максимальном уровне метаболизма: большая доля общего уровня метаболизма связана с мышечными клетками, а их уровень метаболизма изменяется пропорционально массе в степени 1. Иными словами, сила отдельной мышечной клетки не зависит от размера животного. Поэтому уровень метаболизма находится примерно в границах между «уровнем покоя» (масса 2/3 или масса 3/4 , неважно) и «уровнем мышечной активности» (масса1). Общий уровень метаболизма никогда не изменяется прямо пропорционально массе, потому что в него всегда вносят некоторый вклад органы, а у них показатель степени ниже.
Потребность ткани отражается на плотности капилляров. Так как сеть в целом подстраивается к потребностям тканей, плотность капилляров коррелирует-таки с уровнем метаболизма — к тканям, которым нужно мало кислорода, подходит относительно мало кровеносных сосудов. Интересно, что если потребности ткани изменяются пропорционально размеру тела (то есть тканям
Источники и составные части метаболизма
Тот факт, что уровень метаболизма в состоянии покоя изменяется пропорционально массе в степени меньше единицы (точное число сейчас неважно), наводит на мысль, что энергетические потребности клетки падают с увеличением размеров: более крупным организмам нужно тратить меньше ресурсов на элементарное выживание. А то обстоятельство, что показатель степени меньше единицы приложим ко всем эукариотическим организмам от одноклеточных до синих китов (опять же, неважно, что он не всегда один и тот же), подсказывает нам, что энергетическая эффективность — это очень важно. Но это не значит, что размер дает одинаковое преимущество во всех случаях. Чтобы понять, почему потребность в энергии падает, а также то, какие эволюционные возможности сулит это падение, нам нужно понять, из каких составных частей складывается уровень метаболизма и как они изменяются с изменением размера.
Собственно говоря, мы еще не доказали, что увеличение размера действительно повышает эффективность, а не накладывает ограничения. По одному только показателю степени доказать это почти невозможно. Например, уровень метаболизма бактерий с увеличением размера падает. Как мы видели в предыдущей главе, это происходит потому, что для производства энергии им нужна клеточная мембрана. Соответственно, их метаболическая энергия изменяется пропорционально отношению площади поверхности к объему, то есть т 2/3 . Это ограничение, и оно помогает объяснить, почему бактерии маленькие. На эукариотические клетки ограничение не распространяется, потому что они производят энергию во внутриклеточных органеллах — митохондриях. Тот факт, что эукариотические клетки значительно больше, свидетельствует о том, что их размер не ограничен так, как у бактерий. Однако мы не можем исключить возможность того, что увеличение размера накладывает на больших животных ограничения, а не открывает им новые возможности, до тех пор пока не покажем, почему энергетические потребности падают с увеличением размера.
Мы отметили, что большие скелетные мышцы вносят очень незначительный вклад в уровень метаболизма в состоянии покоя. Это заставляет задуматься. Возможно, разные органы вносят разный вклад также и в максимальный уровень метаболизма. В состоянии покоя кислород потребляют в основном органы тела — печень, почки, сердце и т. д. Уровень потребления зависит от соотношения размера органа и размера тела (а оно изменяется с укрупнением животного), а также от уровня метаболизма органов (а оно зависит от потребностей). Например, сердцебиение всегда вносит вклад в уровень метаболизма в состоянии покоя. По мере увеличения размеров тела животных их сердца начинают биться медленнее. При этом занятая сердцем доля тела остается примерно одинаковой, соответственно вклад сердечной мышцы в общий уровень метаболизма падает с увеличением размера. Надо полагать, нечто подобное происходит и с другими органами. Сердце бьется медленнее, потому что оно может позволить себе это, а если конкретнее, то потому что падает потребность его тканей в кислороде. Потребность возрастает, например, когда мы вскочили и побежали, сердце начинает биться быстрее. Пониженная частота сердцебиения у крупных животных говорит о том, что увеличение размера действительно дает возможность повысить энергетическую эффективность.
Разные органы и ткани по-своему реагируют на увеличение размеров тела. Хороший пример — кость. Прочность костей, как и мышц, зависит от площади поперечного сечения, но, в отличие от мышц, кости метаболически инертны. Все это влияет на интересующие нас пропорциональные изменения. Допустим, что существует человек-великан 60 футов высотой. Такой великан не только в 10 раз выше среднего человека, но в 10 раз шире и в 10 раз плотнее. Я позаимствовал этот пример из эссе Холдейна, который вспоминает великанов Попа и Язычника из прочитанной в детстве книги «Путешествие пилигрима в Небесную страну» [52] . (Это одна из немногих фраз в эссе, по которым можно догадаться, что оно написано довольно давно, — не думаю, что многие современные ученые обратились бы к Буньяну в поисках примера.) Холдейн пишет: «Поперечный срез костей таких великанов в 100 раз превышает срез костей среднего человека; следовательно, каждый квадратный дюйм кости гиганта должен выдержать нагрузку в 10 раз большую, чем квадратный дюйм кости среднего человека. Учитывая, что берцовая кость человека разрушается при нагрузке, в 10 раз превышающей его вес, берцовая кость великанов должна была бы ломаться при каждом их шаге. Уж не потому ли на картинках, которые я еще помню, они изображены сидящими?»
52
Произведение английского проповедника и религиозного писателя Джона Буньяна (1628–1688).
Изменение прочности костей пропорционально массе объясняет, почему большие и тяжелые животные должны иметь иную форму тела, чем маленькие и легкие. Это взаимоотношение впервые описал Галилей в книге с восхитительным названием
Раз доля костей в массе тела растет с увеличением размеров, а кости метаболически инертны, большая часть тела великана не будет принимать участия в обмене веществ. Это снижает общий уровень метаболизма и вносит вклад в его пропорциональное изменение с увеличением размера (показатель степени равен 0,92). Однако одна только разница в массе костей не может объяснить сокращение уровня метаболизма с увеличением размера. Может быть, другие органы тоже пропорционально изменяются? Может быть, у печени или почки тоже есть определенный функциональный порог, за которым практически не нужно продолжать наращивать число клеток? Есть два основания полагать, что такой функциональный порог действительно есть. Во-первых, относительный размер многих органов падает с увеличением размера тела. Например, печень составляет около 5,5 % массы тела у двадцатиграммовой мыши, около 4 % у крысы и всего лишь 0,5 % у двухсоткилограммового пони. Даже если уровень метаболизма каждой клетки печени останется прежним, пропорционально более низкая масса этого органа внесет свой вклад в снижение уровня метаболизма пони. Во-вторых, уровень метаболизма каждой клетки печени не является постоянным: потребление кислорода в расчете на клетку падает примерно в девять раз от мыши до лошади. Надо полагать, есть предел уменьшения размера органа в полости тела: уж лучше поддерживать такой размер печени, чтобы она не болталась в брюшной полости, но ограничить уровень метаболизма ее клеток. Сочетание этих двух факторов (относительно маленькой печени и более низкого уровня метаболизма в расчете на одну клетку) означает, что вклад печени в уровень метаболизма значительно падает с увеличением размера.
Теперь мы начинаем понимать, что уровень метаболизма животного в состоянии покоя складывается из многих составных частей. Чтобы вычислить общий уровень метаболизма, нужно знать вклад каждой ткани, каждой клетки в пределах этой ткани и даже вклад конкретных биохимических процессов в этих клетках. Зная это, мы также сможем понять, как и почему уровень метаболизма меняется при переходе из состояния покоя к аэробным нагрузкам. Такой подход использовали Шарль-Антуан Дарво и его коллеги (Университет Британской Колумбии, Ванкувер), работавшие в лаборатории Питера Хочачки — канадского гуру сравнительной биохимии. В работе, опубликованный в журнале Nature в 2002 г., Дарво и соавторы суммировали вклад каждого компонента, а также влияние основных гормонов (гормонов щитовидной железы и катехоламинов), чтобы получить уравнение, объясняющее пропорциональное изменение уровня метаболизма с увеличением размера. Они получили довольно гибкий общий показатель степени — около 0,75 для уровня метаболизма в состоянии покоя и около 0,86 для максимального уровня. На эту статью обрушились как группа Веста, так и группа Банавара. Они оспорили математические выкладки Дарво и его соавторов в письмах в редакцию Nature, и, судя по всему, уравнения действительно не были безупречны. Группа Хочачки настаивала на том, что концептуальный подход верен, и опубликовала видоизмененные уравнения в журнале «Сравнительная биохимия и физиология» в 2003 г. К сожалению, это оказалась одна из последних работ Питера Хочачки. Ученый умер от рака простаты в возрасте 65 лет в сентябре 2002 г., до самого конца сохранив неутолимую жажду знаний: последняя публикация, подготовленная в соавторстве с его лечащими врачами, была посвящена метаболизму злокачественных клеток простаты.
Жесткая критика со стороны математиков и признание самим Хочачкой допущенных ошибок поначалу несколько подорвали доверие беспристрастных наблюдателей (в том числе меня) к этой работе. Создавалось впечатление, что если математическая составляющая оказалась ошибочной, то неверен и сам подход. Теперь я считаю иначе: первая попытка была неудачной, но сама теория стоит на прочной биологической основе, и я с интересом жду последующих ревизий. Эта теория уже предложила количественное подтверждение того, что метаболические потребности действительно падают с увеличением размера, и это обстоятельство контролирует «распределительную сеть», а не наоборот. Еще важнее, что она проливает свет на эволюцию сложности, особенно на один ее аспект, долгое время ускользавший от понимания биологов. Я имею в виду возникновение теплокровности у млекопитающих и птиц. Эта тема прекрасно иллюстрирует связь между размерами и метаболической эффективностью, а также пути, которыми она приводит к усложнению. Теплокровность — это далеко не только возможность согреться на холоде. Она придает жизни новое энергетическое измерение.
Темный Патриарх Светлого Рода
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Под маской моего мужа
Любовные романы:
современные любовные романы
рейтинг книги
Держать удар
11. Девяностые
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Любовь Носорога
Любовные романы:
современные любовные романы
рейтинг книги
Кодекс Охотника. Книга XXIII
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
Меняя маски
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
![Меняя маски](https://style.bubooker.vip/templ/izobr/no_img2.png)