Энергия волн
Шрифт:
От переводчика
В предлагаемой книге обсуждается возможность использования энергии морских волн. Это не фантастика и не завтрашний день. Это уже существующее направление, и вопрос лишь в том, в какой мере надлежит стимулировать его развитие.
Вопрос труден, ибо он связан со многими противоречивыми аспектами планируемой энергетической политики.
Уровень развития энергетики является показателем экономического развития и необходимым его условием. В настоящее время спрос на дешевую первичную энергию значительно превышает предложение и в западном мире чувствительно ощущается ее нехватка. Это приводит к свертыванию ряда направлений в автомобильной промышленности, судостроении и авиации, оказавшихся несостоятельными перед лицом энергетических трудностей, а также к отказу
А каково будущее? Специалисты считают, что в ближайшие десятилетия потребность в энергии, в первую очередь — в электроэнергии, будет бурно расти. Это связано с ростом народонаселения, продолжающейся индустриализацией, автоматизацией процессов и развитием транспорта. В настоящее время более половины потребностей в энергии приходится на промышленно развитые страны и на 6% населения Земли приходится более 7 кВт на человека, а в 80 странах третьего мира — лишь 0,2 кВт на человека. Вместе с тем именно развивающиеся страны, в которых проживает более 2/3 населения земного шара, представят энергетический рынок огромной емкости, заполнение которого необходимо для их экономического развития. К этому следует добавить, что при прогнозируемых среднегодовых темпах прироста энергии (4%) мировые запасы нефти будут исчерпаны приблизительно за 40 лет, газа — за 50 лет и угля — за 70—110 лет.
Переживаемые трудности и требования завтрашнего дня определяют структурные изменения в мировом энергохозяйстве. Основная тенденция заключается в строительстве атомных электростанций и постепенном вытеснении угля и нефти ядерным горючим в качестве основного энергоносителя. Появившееся третье поколение атомных электростанций с реакторами-размножителями на быстрых нейтронах является энергообъектом, перспективность которого связана с тем, что в нем воспроизводится больше ядерного топлива, чем расходуется для получения тепловой энергии. Более отдаленная, но и несравненно более грандиозная перспектива связана с управляемыми термоядерными реакциями, в которых энергия получается за счет дефекта массы, например, в процессе слияния двух ядер тяжелого водорода (дейтерия), имеющегося в морской воде, в ядро гелия. Создание электростанции на таком принципе представит практически неисчерпаемый источник дешевой энергии. Предполагается, что прототипная установка, использующая технологию ядерного синтеза, появится уже к концу столетия.
Таково будущее. Оно радужно, но, к сожалению, несколько отдаленно и неопределенно, как, впрочем, и положено быть будущему. На подступах к нему мировая энергетика под давлением усиливающегося спроса осваивает новые энергоисточники. В этом ряду наиболее привлекательным представляется использование энергии Солнца, внутреннего тепла Земли и энергии океана. Исследования в этой области неуклонно развиваются и действие первых установок уже начинает несколько сказываться на энергобалансе отдельных стран.
Реальные возможности промышленного использования энергии Солнца связаны со строительством больших электростанций башенного типа, повышением эффективности термодинамических преобразователей, а также с разработкой химических технологий типа фотосинтеза. Ежегодные капиталовложения в гелиоэнергетику быстро растут. Так, в США, например, они сейчас уже составляют более половины вложений в строительство электростанций.
Еще более определенные перспективы связаны со строительством геотермальных электростанций, утилизирующих тепло подземных горячих источников. Общая мощность уже работающих в мире установок превышает 1400 мВт, что составляет около 1% мировой выработки электроэнергии.
Таким образом, мы являемся свидетелями мобилизации всех возможностей современной науки и техники для решения актуальных задач энергетики. Широкий фронт работ включает самые разные, еще вчера казавшиеся фантастическими, направления, от строительства крупных, более 1000 мВт, атомных электростанций до создания синтетических
Существует ряд мест с высоким уровнем прилива, где планируется установка мощных приливных электростанций (заливы Кука (США), Сен-Мало (Франция), Фанди (Канада), Пенжинская губа (СССР)). В настоящее время существует несколько действующих опытных ПЭС; в 1981 г. ожидается пуск трех сравнительно крупных станций в Канаде общей мощностью 5600 МВт.
Разработки в стадии проектного рассмотрения относятся к созданию термальных установок для отъема тепловой энергии слоев тропических морей и размещения ряда крупных турбин, утилизирующих энергию Гольфстрима и Куросио. Эти проекты финансируются, и реализация некоторых из них ожидается в 1990-2000 гг.
Однако самым грандиозным и смелым направлением в энергетике океана является появившаяся лишь несколько лет назад волновая энергетика. Впечатляющей является сама идея получения энергии от морских волн в больших масштабах, хотя эта возможность и не связана с каким-либо выдающимся изобретением, знаменующим событие в технике. Она выступает как результат и выражение достаточно высокого научно-технического потенциала, и сегодня вопрос стоит не о принципиальной реализуемости волновых электростанций, а о том, насколько их появление оправдано и увязано с необходимостью удовлетворения комплексу требований, среди которых собственно энергетические проблемы не являются самодовлеющими. Сюда относится в первую очередь все более отчетливо осознаваемая необходимость изменения структуры энергоносителей путем развития альтернативных (по отношению к нефти и углю) источников энергии для уменьшения загрязнения среды и создания предпосылок внедрения рациональных технологий переработки ископаемого топлива. Появление и развитие волновой энергетики свидетельствует о ее способности стать одним из фрагментов сложной картины энергетики будущего.
Волновая мощность Мирового океана оценивается в 2,7 млрд кВт, что составляет около 30% потребляемой в мире энергии. Целесообразность установки волновых электростанцией определяется региональными особенностями и прежде всего плотностью приходящей энергии — ее величиной на единицу длины волнового фронта. Некоторые промышленно развитые западные страны имеют шельфовую зону с высокой концентрацией волновой энергии; на участках прибрежной зоны США и Японии, где планируется размещение станций, она составляет около 40 кВт на метр волнового фронта. Еще более благоприятны в этом смысле условия на западном побережье Англии; в районе Гебридских островов, например, удельная мощность фронта достигает 80 кВт/м.
Волновые электростанции сравнительно недешевы. Это понятно, если представить их жизнедеятельность в условиях, когда эффективность возрастает с ростом агрессивности среды. Удельная стоимость их составляет 4000 — 5000 фунтов стерлингов на 1 кВт вырабатываемой энергии, в то время как стоимость тепловых и атомных электростанций — 500 — 1000 фунтов стерлингов на 1 кВт.
Функциональный принцип работы волновой электростанции состоит в преобразовании потенциальной энергии волн в кинетическую энергию пульсаций и оформлении пульсаций в однонаправленное усилие, вращающее вал электрогенератора. Каждая из стран выдвинула собственные варианты реализации этого принципа. Так, преобразователи энергии морских волн, разработанные в Японии, основаны на вытеснении воздуха из ограниченного объема при колебании поверхности воды с подачей воздуха на воздушную турбину. В настоящее время в Японском море испытывается плавучая электростанция «Каймей», выполненная по проекту с участием США, Канады и Англии, мощностью 330 кВт и стоимостью 140 млн. йен. Целью исследований является снятие характеристик воздушных турбогенераторов с помощью телеметрической аппаратуры, определение демпфирующего эффекта при отборе энергии волны, опробование системы крепления станции морскими якорями и испытание систем передачи электроэнергии на берег. Промышленный образец будет иметь 9 воздушных турбин общей мощностью 2 МВт. Помимо этого, с 1978 г. в морских условиях работают около 300 преобразователей небольшой мощности, обеспечивающих задачи навигации.