Чтение онлайн

на главную - закладки

Жанры

Энергия жизни. От искры до фотосинтеза
Шрифт:

Взирая на материю, и в первую очередь на газы, как на совокупность одиночных атомов или, чаще, групп атомов, именуемых молекулами, логично было вернуться к давнишним рассуждениям Бернулли о том, как свойства газов можно объяснить через движение составляющих их частиц. Были проведены дополнительные эксперименты, результаты которых интерпретировались уже в свете теории атомов.

К примеру, Джоуль, проводя в 1840-х годах свои эксперименты по превращению всеми возможными способами работы в тепло, исследовал расширение газов такими способами, при которых работа не была задействована. Расширяясь, газы не толкали никаких поршней и не приводили в движение никаких предметов. Они просто расширялись в пустоту. Когда

это происходило, Джоуль замерял температуру газов и сперва не обнаруживал ни ее повышения, ни понижения, как и ожидалось от процесса, в котором не задействована работа.

Однако в 1852 году, работая вместе с Томсоном (который позже станет лордом Кельвином), он установил, что на самом деле в таких случаях все же происходит небольшое понижение температуры. Это явление до сих пор называют «эффектом Джоуля—Томсона». Понижение температуры свидетельствует о том, что расширение газа на самом деле не является процессом, где не задействовано никакой работы. Молекулы газа испытывают друг к другу слабое притяжение, и движение против силы этого притяжения и есть тот момент, где совершается работа. Энергия, необходимая для совершения этой работы, берется из теплового содержания газа, так что в результате температура несколько падает.

Наличие этой силы межмолекулярного притяжения несколько усложняет расчеты, которыми должны описываться свойства газа, но химики-теоретики упростили себе жизнь, взяв за материал для своих формул некий воображаемый «идеальный газ», в котором сила притяжения между молекулами равна нулю, как и суммарный объем самих молекул.

Строго говоря, описываемая таким образом ситуация невозможна, но ее изобретение настолько упрощает расчеты, что позволяет теоретикам выводить из них простые законы. Эти законы приблизительно справедливы для реальных ситуаций и, будучи однажды сформулированными, в дальнейшем могут подвергаться всевозможным уточнениям для каждого конкретного случая. Это явно более благодарный подход, чем пытаться с самого начала математически просчитывать все детали реальных ситуаций.

И закон Бойля, и закон Шарля в точности применимы только к идеальному газу, и если свести их воедино, то мы получим простое «уравнение состояния газов», которое описывает состояние таких параметров газа, как температура, давление и объем. Зная любые два из этих параметров, можно сразу же высчитать третий. В отношении реальных газов результат таких расчетов будет соответствовать действительности лишь приблизительно (хотя порой очень близко к точному). Однако уравнение состояния газов вполне можно модифицировать таким образом, чтобы в нем учитывались и сила межмолекулярного притяжения, и объем молекул. Голландский физик Йоханнес Дидерик ван-дер-Ваальс с большим успехом привел одну из таких модификаций в 1873 году.

Я надеюсь, что это объяснит тот факт, что в течение 1850-х годов множество исследователей (в том числе и Клаузиус), прекрасно зная, что на самом деле это не так, продолжали дорабатывать работу Бернулли исключительно для газов с нулевым объемом частиц, не оказывающих друг на друга никакого воздействия. В результате родилась кинетическая теория газов, то есть теория, рассматривающая частицы в движении.

До совершенства эту теорию довели шотландский математик Джеймс Кларк Максвелл и австрийский физик Людвиг Больцман в 1859 году и за несколько последующих лет. Итогом их математического подхода (в условия которого входило, что молекулы газа движутся по прямой в случайно выбранных направлениях и сталкиваются друг с другом и со стенками камеры с абсолютной упругостью, не теряя при столкновении энергии) стало установление связи скорости движения молекул с температурой газа.

Представьте себе, что две молекулы газа столкнулись. Они отскакивают в разные стороны, изменив после столкновения направление движения и, вероятнее всего, скорость. Однако суммарный импульс системы остается при этом постоянным (см. главу 3), так что скорости, которые обе частицы могут иметь после столкновения, далеко не произвольны.

Но даже в этом случае распределение скоростей частиц после столкновения может быть различным. Если, к примеру, быстро движущаяся молекула сталкивается с медленно движущейся, то может получиться так, что медленная остановится, а быстрая отлетит в сторону еще быстрее, чем раньше, обладая всем суммарным импульсом обеих молекул до столкновения. Возможно также (причем куда более вероятно), что в результате скорости обеих молекул изменятся в сторону усреднения — быстро движущаяся молекула станет двигаться медленнее, а медленно движущаяся — быстрее.

Это можно наблюдать на примере бильярдных шаров. Во времена Максвелла атомы и молекулы так и представляли в виде сверхмалых бильярдных шаров. Сейчас их представляют уже не так; на самом деле сейчас уже известно, что строение их настолько сложно, что их невозможно представить в виде чего бы то ни было нам знакомого, не покривив при этом душой. Однако для описаний в рамках кинетической теории газов аналогии с бильярдными шарами вполне достаточно.

Предсказать, как именно перераспределятся скорости двух конкретных молекул после их столкновения, невозможно. Однако в отношении бессчетного множества квинтиллионов столкновений (а именно столько их и происходит каждую секунду в любом объеме газа, достаточно большом, чтобы его можно было увидеть) вполне допустимо использовать статистические методы для установления среднестатистического распределения скоростей. С их помощью можно показать, что молекулы любого заданного объема газа имеют некую «наиболее вероятную» скорость, к которой в той или иной степени тяготеют все молекулы этого объема. В любой отдельно взятый момент времени одни молекулы будут двигаться чуть (или значительно) быстрее этой «наиболее вероятной» скорости, другие — чуть (или значительно) медленнее.

Рис. 5. Скорость молекул и температура 

Довольно сложное математическое выражение, получившее название «статистический закон распределения Максвелла—Больцмана» (рис. 5) в честь разработавших его ученых, позволило подсчитать процентное соотношение молекул любого заданного объема газа, относящихся к группам с различным значением скорости (при условии, что известны температура газа и масса составляющих его молекул). Если изобразить эту формулу в виде графика отношения скорости к процентному соотношению обладающих данной скоростью молекул, то получим плавную кривую, достигающую пика на значении равном «наиболее вероятной» скорости, а затем — так же плавно снижающуюся.

Теперь можно провести прямую связь между температурой и движением молекул газа. В любом газе, при любой температуре скорость отдельных молекул может принимать значения от нуля до крайне высокой. Однако наиболее вероятная скорость оказалась находящейся в прямой пропорции к квадратному корню от абсолютного значения температуры. По мере повышения температуры наиболее вероятная скорость молекул газа увеличивается. Если абсолютная температура возрастает в четыре раза, то наиболее вероятная скорость молекул — в два.

Так что для любого отдельного газа температура является величиной, тесно привязанной к наиболее вероятной скорости молекул. Однако для того, чтобы корректно обобщить это правило для любых газов, надо принять в расчет массу молекул этого газа. При любой заданной температуре, согласно формуле Максвелла—Больцмана, наиболее вероятная скорость обратно пропорциональна квадратному корню этой массы. Чем массивнее молекулы, тем медленнее они движутся. Молекула кислорода в шестнадцать раз массивнее молекулы водорода, поэтому молекула водорода движется в четыре раза (четыре — квадратный корень из шестнадцати) быстрее, чем молекула кислорода при любой заданной температуре.

Поделиться:
Популярные книги

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Девочка по имени Зачем

Юнина Наталья
Любовные романы:
современные любовные романы
5.73
рейтинг книги
Девочка по имени Зачем

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи