Чтение онлайн

на главную - закладки

Жанры

Энергия жизни. От искры до фотосинтеза
Шрифт:

Однако в XVIII веке принято было представлять тепло как невесомый нематериальный ток. Такую точку зрения впервые выдвинул голландский физик Герман Бургаве примерно в 1700 году. В общем-то никаких объективных причин считать, что тепло представляет собой движение или вибрации, либо предполагать, что в горячих телах это движение или эти вибрации происходят быстрее, чем в холодных, не было. Разговоры о том, что, мол, существуют некие микрочастицы, слишком маленькие для того, чтобы их можно было увидеть, и вибрирующие слишком быстро и малоамплитудно для того, чтобы это можно было заметить, дети «эпохи рассудка» могли воспринимать только как заумную фантасмагорию.

Точнее говоря, в 1738 году профессор-математик из Санкт-Петербурга, столицы России, которого звали Даниил Бернулли, показал, что если представить газы состоящими из крошечных частиц, то из этого можно сделать вывод, что за давление газа отвечает движение этих частиц. Более того, предложенная им математическая модель, при которой скорость этих частиц возрастает по мере повышения температуры, в точности описывала реальные данные наблюдений. Однако его современники сочли эту теорию не более чем забавной спекуляцией. Большинство ученых предпочли принять на вооружение теорию теплорода — невесомого флюида, содержащегося в веществах, поскольку уже тогда было известно (по крайней мере, в представлении общественности) немало подобных флюидов в других областях: свет, электричество, магнетизм и т. п. Все были уверены в существовании такого явления, как «флогистон», — считалось, что его испускает в воздух любое вещество, сгорая или ржавея. Почему бы теплу не быть чем-то подобным? Так и сочли, и флюид тепла получил название «теплород».

Представление об одном из таких флюидов было торжественно похоронено в 1770-х годах, когда Лавуазье опроверг гипотезу о существовании флогистона, заменив ее тем представлением о природе горения и ржавления, которое мы разделяем и сейчас. Он показал, что при этих процессах не теряется или приобретается флогистон, а происходят химические реакции с содержащимся в воздухе кислородом. Однако существование теплорода тот же Лавуазье подтвердил, подкрепив эту теорию собственным авторитетом величайшего химика своего времени. Благодаря его заступничеству теория теплорода продержалась еще полвека, несмотря на лавинообразный рост фактов, свидетельствующих против нее.

Первые эксперименты, результаты которых однозначно указывали на ошибочность поддерживаемой Лавуазье теории теплорода, провел эмигрант из Америки Бенджамин Томпсон. Томпсон был тори и бежал из Америки во время Войны за независимость. Впоследствии, в 1791 году, курфюрст Баварский пожалует ему графский титул, и новоиспеченный граф вскоре женится, как ни забавно, на вдове самого Лавуазье. В историю он попал под именем графа Рамфорда.

В 1798 году граф Рамфорд наблюдал за высверливанием пушечного жерла в одной из оружейных мастерских курфюрста. В процессе погружения сверла в металлический цилиндр выделялось очень много тепла. Чтобы избежать перегрева, отверстие, в котором работало сверло, заливали водой и постоянно подливали ее по мере выкипания.

Сторонники теории теплорода не могли отрицать, что при такого рода трении вырабатывается тепло, и объясняли это так: металлический предмет всегда содержит тепло, а когда сверло вскрывает поверхность предмета, тепло выходит наружу. Рамфорд отметил в связи с этим два факта. Во-первых, количество содержащегося в металле тепла кажется бесконечным — сколько его ни сверли, тепло не перестает вырабатываться. А во-вторых, даже сточившееся сверло, уже практически не углубляющееся в металл, все равно производит не меньше тепла — а строго говоря, даже больше.

Рамфорду пришло в голову лишь одно вразумительное объяснение, почему при сверлении вырабатывается тепло — потому что в него переходит производимая работа. Рамфорд даже придумал единицу измерения механического эквивалента тепла на полвека раньше Джоуля, но выбранное им значение было слишком уж велико. Граф решил, что работа и тепло — тесно взаимосвязанные явления, и, поскольку работа, за которой он наблюдал, представляла собой механическое движение, Рамфорд заключил, что тепло тоже должно представлять собой одну из форм механического движения.

Через год, в 1799 году, близкий по сути эксперимент провел английский химик Гемфри Дэви. Он взял два куска льда и стал тереть их друг о друга с помощью механического устройства при температуре чуть ниже точки замерзания воды. Согласно господствовавшей на тот момент теории теплорода, при такой температуре лед просто не мог содержать в себе достаточно теплорода, чтобы растаять. Однако в процессе трения лед все же начинал таять. Дэви, как и граф Рамфорд, сделал вывод, что энергия движения переводится в тепло, а значит, тепло — это одна из форм движения.

Несмотря на это, теория теплорода господствовала в умах еще несколько десятков лет.

Поколебать ее господство удалось не путем изучения тепла как такового, а путем изучения материи. XVII и XVIII века стали периодом постепенного накопления знаний о свойствах газов. В четвертой главе уже упоминалось о законах Бойля и Шарля. Все эти знания просто взывали к тому, чтобы свести их в единую теорию вроде той, которую безуспешно пытался продвинуть Бернулли.

И вот в 1803 году английский химик Джон Дальтон продвинулся еще дальше. Он предположил, что не только газы, но и вообще любое вещество состоит из крошечных частиц, слишком маленьких, чтобы их можно было увидеть, неделимых и неразрушимых. Он назвал такие частицы «атомами». Этот термин происходит из древнегреческой философии, поскольку еще среди древних греков были философы, которые придерживались сходных взглядов. Однако греки в свое время не увидели в этих теориях ничего, кроме пустых рассуждений, и отвергли их. А Джон Дальтон — и это принципиальная разница! — положил в основу своих выводов строгие экспериментальные данные.

Несмотря на это, теория Дальтона не сразу овладела умами химиков — скорее всего, из-за того, что уложить в голове представление о существовании каких-то частиц, слишком малых для того, чтобы быть заметными в принципе, очень сложно. Но мало-помалу стало выясняться, что эта теория в силах дать ответ на многие вопросы. В ее рамках описывались не только свойства газов (как в теории Бернулли), но и многие свойства химических реакций твердых и жидких веществ. Все реакции обретали единую логику, если рассматривать их как взаимодействие различного рода атомов, связанных в определенные группы (позже их назовут «молекулами»), которые распадаются, чтобы дать возможность образовавшим их атомам связаться уже по-другому. Сами по себе атомы так и продолжали оставаться невидимыми, но преимущества, которые несла с собой теория атомов в отношении понимания свойств вещества, понемногу заставляли ученых ее принять.

Датировать завершение этого процесса можно 1858 годом, когда итальянский химик Станислао Канниццаро опубликовал трактат, где химические явления объяснялись через теорию атомов. Приводимые им объяснения были столь четкими и ясными, что непонимания не осталось уже ни у кого. Два года спустя на конференции химиков в Карлсруэ (Германия) Канниццаро активно отстоял эту теорию, убедив присутствующих как фактическими свидетельствами, так и силой собственного авторитета. С этого момента теория атомов стала единственной господствующей и продолжает оставаться таковой по сей день, хотя на сегодня об атомах известно уже, что они сами по себе гораздо сложнее тех неделимых маленьких шаров, лишенных собственных свойств, какими описывали их Дальтон и Канниццаро.

Популярные книги

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Волк 4: Лихие 90-е

Киров Никита
4. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 4: Лихие 90-е

Долгие дороги сказок (авторский сборник)

Сапегин Александр Павлович
Дороги сказок
Фантастика:
фэнтези
9.52
рейтинг книги
Долгие дороги сказок (авторский сборник)

Предатель. Вернуть любимую

Дали Мила
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Предатель. Вернуть любимую

Перерождение

Жгулёв Пётр Николаевич
9. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Перерождение

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Дракон

Бубела Олег Николаевич
5. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.31
рейтинг книги
Дракон

Титан империи 5

Артемов Александр Александрович
5. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи 5

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла