Чтение онлайн

на главную

Жанры

Энергия жизни. От искры до фотосинтеза
Шрифт:

На самом деле напрямую измерить это тепло формирования невозможно, поскольку не существует такой химической реакции, в ходе которой можно было бы за один шаг создать этилен из углерода и водорода. Тем не менее вышеприведенная цифра не вызывает у химиков никаких сомнений. Во-первых, все математические действия, произведенные нами, обоснованы вторым законом термодинамики, которые не оспаривает никто из химиков, а во-вторых, во всех тех случаях, где математические расчеты можно проверить практикой, они подтверждаются.

По этим причинам теплота формирования этилена и многих других соединений рассчитывается на бумаге ко всеобщему удовлетворению, и тот факт, что получаемые значения не проверены на практике и никогда не будут проверены, никого не смущает.

Глава 9.

НАПРАВЛЕНИЕ РЕАКЦИИ

Закон Гесса является выражением первого закона термодинамики применительно к химическим реакциям, и теперь мы переходим к дальнейшему. Несколько глав назад мы сделали попытку определить жизнь через энтропию, а также предположили, что жизнь как процесс в чем-то сродни горению и, следовательно, должна потреблять химическую энергию. Теперь мы попытаемся установить, как же действует второй закон термодинамики применительно к химическим реакциям.

В отношении механической энергии мы уже знаем, что второй закон термодинамики требует, чтобы предметы спонтанно перемещались из положения с большей потенциальной энергией (в данном случае она называется «гравитационным потенциалом») к положению с меньшей, и не наоборот. Вода течет по склону горы вниз, а не вверх. В отношении тепловой энергии второй закон термодинамики требует, чтобы тепло спонтанно переходило только от горячих тел (обладающих большей температурой — «тепловым потенциалом») к холодным, а не наоборот. Продолжая аналогию, можно предположить, что и химические реакции будут проходить таким образом, чтобы вещество переходило из состояния с большим «химическим потенциалом» в состояние с меньшим, и не наоборот.

Соответственно возникает вопрос: что же это за химический потенциал и как его измерить?

Бертло, которого я упоминал в предыдущей главе, как автора множества экспериментов по измерению теплоты реакции, считал, что ответ может крыться в самих этих измерениях. Он высказывал мнение, что спонтанными можно считать те реакции, которые характеризуются снижением химической энергии и соответственно выделением тепла, то есть те, Н которых отрицательна. С другой стороны, реакции, при которых химическая энергия увеличивается, так что тепло извлекается из окружающей среды (иными словами, Н которых имеет положительное значение), не будут протекать спонтанно.

Бертло назвал реакции первого типа (с выделением тепла в окружающую среду) «экзотермическими» (от греческого «тепло наружу»), а реакции второго типа (с поглощением тепла из окружающей среды) — «эндотермическими» (что означает «тепло внутрь»). По мнению Бертло, спонтанными могут быть только экзотермические реакции.

Существует множество примеров, которые подтверждают это правило. Например, смесь водорода с кислородом, если ее поджечь, возгорится мгновенно и даже взрывообразно, соединяясь в воду, — это экзотермическая реакция. С другой стороны, вода может вечно находиться в стабильном состоянии, не выказывая ни малейшего желания разлагаться на водород и кислород, — если бы этот процесс начался, он был бы эндотермическим. Точнее, если воду как следует нагреть, она начнет разлагаться, но ведь и вода может течь вверх, если ее качать насосом.

Тут можно возразить, что смесь водорода с кислородом тоже может вечно находиться в стабильном состоянии, совершенно не собираясь вступать в реакцию, пока в систему, опять же, не добавят избыточное тепло. Однако есть принципиальная разница. После того как некоторое количество избыточного тепла подожжет смесь водорода с кислородом, дальше реакция продолжается сама сколь угодно долго. Если же, с другой стороны, добавление дополнительного тепла, или электрического тока, запускает реакцию разложения воды на водород и кислород, то прекращение подачи тепла или электричества тут же приведет к остановке реакции на любом этапе.

Короче говоря, экзотермическая реакция соединения водорода и кислорода в принципе может продолжаться спонтанно, а эндотермическая реакция разложения воды — не может.

Однако, к огорчению Бертло, это правило оказалось недостаточно всеобъемлющим. Все экзотермические реакции действительно происходят спонтанно, а все эндотермические, как правило, не происходят спонтанно. Однако все же есть несколько реакций, которые являются эндотермическими и при этом все же происходят спонтанно. Лучшим примером такого рода реакций является растворение некоторых веществ в воде. Если аммиачную селитру высыпать в воду, то она спонтанно растворится, хотя АН этого процесса и будет положительна. При этом происходит набор химической энергии, а тепловая — извлекается из воды, которая становится ледяной на ощупь. И не важно, скольким количеством примеров подтверждается теория Бертло, для того, чтобы опровергнуть ее, достаточно и единственного исключения.

Однако на самом деле ущербность теории Бертло доказывается не только фактом наличия нескольких опровергающих ее исключений. Против нее имеются и некоторые более тонкие возражения, подводящие нас к идее «химического равновесия».

Реакции, которые вызывают наибольший интерес термохимиков — реакции горения, — кажутся однонаправленными. То есть углерод и кислород соединяются навсегда для образования углекислоты, водород и кислород — для образования воды, соединения, имеющие в своем составе и углерод, и водород, соединяются навсегда с кислородом для образования углекислоты и воды. Более того, никогда вода в сколь-либо заметных количествах не разлагается на водород и кислород, а углекислота — на углерод и кислород. И вода никогда не соединяется с углекислотой для образования этилена или других углеводородов. Такие однонаправленные реакции также называют необратимыми.

Однако положение дел обстоит таким образом далеко не со всеми химическими реакциями. Например, посмотрим на одну из реакций с участием водорода и йода. При обычной температуре йод представляет собой синевато-серое твердое вещество, но плавное нагревание его приводит к появлению фиолетового газа, а при температуре выше 184 °С он существует исключительно в виде газа. В газообразном состоянии йод состоит из двухатомных молекул (I2).

Если же смешать йод с водородом при температуре, скажем, 445 °С, будет образовываться соединение йодоводород (HI):

H2 + I2– > 2HI.

Однако в соединение вступают не весь йод и не весь водород. Сколько бы времени ни протекала реакция, все равно часть йода и часть водорода не будут в ней участвовать.

Если же, наоборот, произвести некоторое количество чистого йодоводорода и нагреть его до тех же 445 °С, то он начнет разлагаться на йод и водород:

2HI -> Н2 + I2.

И опять же, независимо от того, сколько времени протекает реакция, распадется не весь йодоводород. На самом деле, что бы мы ни взяли изначально — смесь ли йода и водорода или йодоводород, в итоге мы получим одно и то же соотношение: около 80% йода и водорода будут находиться в соединенном виде HI; около 20% — в разрозненном. Такие реакции, способные протекать в обоих направлениях, называют обратимыми.

Популярные книги

Волк 5: Лихие 90-е

Киров Никита
5. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 5: Лихие 90-е

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Князь Барсов

Петров Максим Николаевич
1. РОС. На мягких лапах
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Князь Барсов

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Дракон

Бубела Олег Николаевич
5. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.31
рейтинг книги
Дракон

Императорский отбор

Свободина Виктория
Фантастика:
фэнтези
8.56
рейтинг книги
Императорский отбор

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Эксперимент

Юнина Наталья
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Эксперимент