Энергия жизни. От искры до фотосинтеза
Шрифт:
Водород (Н) — 1
Гелий (Не) — 2
Углерод (С) — 6
Азот (N) — 7
Кислород (О) — 8
Фтор (F) — 9
Натрий (Na) — 11
Магний (Mg) — 12
Алюминий (Al) — 13
Фосфор (Р) — 15
Сера (S) — 16
Хлор (Cl) — 17
Калий (К) — 19
Кальций (Са) — 20
Хром (Cr) — 24
Марганец (Mn) — 25
Железо (Fe) — 26
Кобальт (Со) — 27
Никель (Ni) — 28
Медь (Си) — 29
Цинк(Zn) — 30
Серебро (Ag) — 47
Олово(Sn) — 50
Йод (I) — 53
Вольфрам (W) — 74
Платина (Pt) — 78
Золото (Au) — 79
Ртуть (Hg) — 80
Свинец (Pb) — 82
Радий (Ra) — 88
Торий (Th) — 90
Уран (U) — 92
Плутоний (Pu) — 94
Лоуренсий (Lw) — 103
На
При подобного рода перераспределении электронов атомы продолжают оставаться электрически нейтральными.
Однако бывает и так, что определенные электроны в атомах некоторых элементов держатся крайне слабо. К примеру, в атоме натрия самый удаленный электрон не слишком-то прочно привязан к своему атому. Поэтому при соседстве с атомом хлора (который все собственные электроны удерживает очень крепко) самый удаленный атом натрия не то что становится «общим», а вообще переходит из атома натрия в атом хлора.
После такого перехода в атоме натрия остается всего 10 электронов, то есть на один электрон меньше, чем требуется, чтобы нейтрализовать положительный заряд 11 протонов ядра. Атом натрия теряет электрическую нейтральность. Теперь он несет общий заряд значением в +1, это заряд протона, потерявшего уравновешивающий его электрон. С другой стороны, у атома хлора теперь 18 электронов, то есть на один электрон больше, чем требуется для нейтрализации 17 протонов ядра. Поэтому его общий заряд теперь равняется заряду этого лишнего электрона, то есть составляет -1.
Такие атомы, несущие электрический заряд по причине избытка или нехватки электронов, называют «ионами». Естественно, ионы делят на положительные и отрицательные. Ионы обозначают приставляя к обычному символу элемента маленький плюс или минус, отражающий заряд иона. То есть ион натрия обозначается как N+, ион хлора — как Сl– .
Некоторые атомы могут терять в ходе химической реакции по два или даже три электрона, а могут и вести себя по-разному в разных условиях — при одной реакции терять два электрона, а при другой — три. Бывает даже так, что группа атомов, удерживаемая воедино с помощью обычных связей из «общих» электронов, теряет или приобретает электроны. Атомы остаются соединенными, но все вместе приобретают электрический заряд и становятся «сложными ионами». Мы не будем вдаваться в пущие подробности; однако на всякий случай приводим здесь список самых распространенных ионов (табл. 3).
Положительные
Название … Обозначение
Ион водорода … Н+
Ион натрия … Na+
Ион калия … К+
Ион магния … Mg2+
Ион кальция … Са2+
Ион цинка … Zn2+
Одновалентный ион меди … Cu+
Двухвалентный ион меди … Cu2+
Двухвалентный ион железа … Fe2+
Двухвалентный ион железа … Fe3+
Ион аммония … NH4+
Отрицательные
Ион фтора … F–
Ион хлора … Сl–
Ион йода … I–
Ион серы … S2-
Карбонат-ион … СО32-
Нитрат-ион … NO3–
Сульфат-ион … SO42-
Фосфат-ион … PO43-
Примечание. Когда атом или группа атомов теряют или приобретают более одного электрона, то этот факт отмечают приписывая перед плюсом или минусом соответствующий индекс.
Закон о том, что противоположно заряженные частицы притягивают друг друга, распространяется и на ионы. Поскольку ионы натрия и хлора формируются путем перехода электрона от атома натрия к атому хлора, то ионы остаются вместе, связанные силой притяжения между положительным и отрицательным зарядами двух ионов. В итоге получается соединение хлорид натрия — привычная нам поваренная соль.
Такие вещества, как хлорид натрия, удерживаемые воедино ионными связями, не состоят из молекул в том же понимании, что и углекислота или вода.
В кристалле поваренной соли любой отдельный ион натрия не является прочно соединенным с каким-то конкретным ионом хлора в единую двухатомную частицу. Нагляднее всего это видно на примере растворения поваренной соли. Ионы натрия и хлора свободно перемещаются в растворе. Точнее, существует всеобщее притяжение между положительными и отрицательными зарядами, но любой отдельный ион натрия может передвигаться, не таща за собой какой-то конкретный ион хлора. На самом деле под воздействием электрического тока оба набора ионов можно заставить двигаться в противоположных направлениях.
Некоторые химические реакции лучше всего рассматривать именно в свете такой вот ионной независимости; тогда проще всего описывать их, сосредоточившись на одном из ионов и упуская из виду второй.
К примеру, возьмем цинк (Zn) и медный купорос, молекула которого состоит из одного атома меди (Cu), одного атома серы (S) и четырех атомов кислорода и обозначается CuSO4. Если в раствор медного купороса добавить металлический цинк, то произойдет спонтанная реакция, в ходе которой цинк войдет в состав раствора, который станет теперь раствором сульфата цинка (ZnSO4), а медь выйдет из состава раствора и выпадет в осадок в виде знакомого нам красноватого металла.
Записанное обычным образом выражение для этой реакции будет выглядеть так:
При этом создается впечатление, что сульфатная группа (SO4) отделяется от меди и прикрепляется к цинку. На самом же деле сульфатная группа ничего подобного не совершает. Изо всех компонентов системы она играет самую пассивную роль. Взглянем на происходящее, исходя из ионной картины.
Медный купорос удерживают воедино ионные связи (по крайней мере, частично), и в растворе он существует не в виде отдельных молекул, а в виде смеси ионов меди (Cu2+) и сульфат-ионов (SO2). В ходе реакции атом цинка (его можно записать как Zn0, чтобы лишний раз подчеркнуть его нейтральность в металлической форме) теряет два электрона и становится ионом цинка (Zn2+), и эти два электрона приобретает ион меди, становясь, таким образом, нейтральным атомом меди (Cu0) и оседая в этом виде.