Чтение онлайн

на главную

Жанры

Шрифт:

Те же соображения применимы к задачам о самолетах, летящих по ветру и против ветра. Если на преодоление расстояния из A в B и обратно в безветренную погоду самолет затрачивает определенное время, то на преодоление того же пути в ветреную погоду времени потребуется заведомо больше независимо от того, куда дует ветер: от A к B или от B к A.

Не менее известна еще одна хорошая задача на относительное движение. Девушка садится в последний вагон поезда. Обнаружив, что все места в вагоне заняты, она оставляет в тамбуре тяжелый чемодан и в тот самый момент, когда за окном проплывает

фабрика детских игрушек «Зайки из байки», отправляется на поиск свободного места, идя размеренным шагом, и через 5 мин доходит до первого вагона. Убедившись, что свободных мест нигде нет, девушка поворачивается и идет назад с той же скоростью. В тот момент, когда она возвращается к чемодану, за окном мелькает магазин бакалейных товаров «Супы, крупы и ступы», находящийся от фабрики «Зайки из байки» на расстоянии 5 км. С какой скоростью идет поезд?

Решение этой задачи аналогично решению задачи о шляпке Элен, унесенной ветром: знать, с какой скоростью идет девушка по вагонам и какое расстояние ей приходится пройти, совсем не нужно. Путь туда и обратно она проделывает за 10 мин. Следовательно, ее чемодан проезжает 5 км за 10 мин. Значит, поезд идет со скоростью 0,5 км/мин, или 30 км/ч.

А вот малоизвестная задача на относительное движение, способная поставить в тупик даже сильных математиков. Юноша и девушка участвуют в забеге на 100 м. К тому моменту, когда девушка пересекает линию финиша, юноша успевают пробежать 95 м, и девушка выигрывает забег с преимуществом в 5 м.

В другом забеге на ту же дистанцию девушка, чтобы уравнять шансы на победу, берет старт в 5 м позади стартовой черты. Кто выиграет второй забег, если оба спортсмена бегут с такой же скоростью, как и в первом забеге?

Если вы думаете, что оба участника забега пересекли линию финиша одновременно, то мы настоятельно рекомендуем поразмыслить над задачей еще немного. Может быть, вы все-таки догадаетесь, как правильно решить эту задачу? (Указание: где девушка догонит юношу?)

Еще одна забавная задачка рассказывает о божьей коровке, отравленной какими-то химикалиями и утратившей способность ориентироваться в пространстве. Божья коровка находится на одном конце метровой рейки и хочет доползти до другого конца. Каждую секунду она проползает 3 см вперед и 2 см назад. За сколько времени она доползет до другого конца рейки? (Те, кто думает, что это произойдет через 100 с, ошибаются!)

Финансовые проблемы

Друзья уже почти добрались до хижины дядюшки Генри, когда Элен предложила Бобу следующую задачу-головоломку.

Элен. Что, по-твоему, дороже: копилка, наполненная пятидолларовыми золотыми монетами, или та же копилка, наполненная десятидолларовыми золотыми монетами?

Боб немного помедлил, но ответил правильно и в свою очередь задал Элен задачу.

Боб. У одного шотландца 44 бумажных доллара и 10 карманов. Может ли он разложить деньги по карманам так, чтобы число долларовых купюр во всех карманах было различно?

Принцип Дирихле

В копилке, наполненной пятидолларовыми золотыми монетами, золота столько же, сколько в копилке с десятидолларовыми золотыми монетами, поэтому обе копилки содержат золота на одну и ту же сумму.

Задача о шотландце, раскладывающем по 10 карманам 44 бумажных доллара, гораздо труднее. Выясним, что произойдет, если мы разложим по карманам минимальное число купюр. Даже если мы оставим первый карман пустым (положив в него чисто символически 0 долларов), а в каждый из следующих карманов положим на 1 доллар больше, чем в предыдущий, то всего нам понадобится 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 долларов, что больше тех 44 долларов, которые были у шотландца. А стоит лишь нам изъять хотя бы один доллар из какого-нибудь кармана, как в двух карманах долларовых

купюр окажется поровну.

Основную идею такого рода рассуждений математики называют принципом Дирихле. Мы называли его также принципом «птичка в клетке». Суть его кратко можно сформулировать так: трех птичек невозможно рассадить по двум клеткам так, чтобы в каждой клетке оказалось по птичке. А вот еще один пример занимательной задачи, в решении которой используется принцип Дирихле. Предположим, что в городе не более 200 000 жителей. Можно ли утверждать, что по крайней мере у двух из них число волос на голове одинаково?

Такое утверждение может показаться невероятным, но принцип Дирихле убеждает нас в том, что ответ на этот вопрос должен быть утвердительным. Судите сами. Число волос на голове у человека не превышает 100 000. Если среди жителей города нет двух людей с одинаковым числом волос на голове, то один из них может быть совершенно лысым, у другого может расти на голове 1 волос, у третьего 2 волоса и т. д. Но как только мы дойдем до 100 001-го человека, как число волос у него на голове непременно окажется таким же, как у кого-то из жителей города. А так как население города составляет около 200 000 человек, то среди его жителей найдется около 100 000 таких, у которых число волос на голове будет совпадать с числом волос на голове у кого-то другого!

Часы дядюшки Генри

Едва Элен успела решить предложенную Бобом задачку, как они дошли до хижины дядюшки Генри. Хижину дядюшка построил своими руками, и в ней не было ни электричества, ни телефона, ни радио, ни телевизора.

Дядюшка Генри сразу обратился к ним с вопросом.

Генри. Который сейчас час?

Элен. У меня часов вообще не было, а часы Боба мы потеряли. А разве у вас нет стенных часов?

Генри. Часы-то есть, да вот беда: вчера вечером я забыл завести их. Вы пока побудьте тут, а я схожу в город, узнаю, который час, и заодно раздобуду чего-нибудь съестного.

Дядюшка Генри отправился в соседний городок и полтора часа провел там в бакалейном магазине.

Вернувшись домой, дядюшка Генри сразу же перевел стрелки часов.

Элен. Дядюшка, вы уверены, что часы теперь показывают правильное время? Ведь вы не можете знать, сколько времени пробыли в пути, если не знаете, сколько прошли я с какой скоростью.

Генри. Ни к чему все это, Элен! Расстояние от моей хижины до городка никто не мерил, да и скорость, с которой я хожу, тоже. Знаю лишь, что туда и обратно я шел одной и той же дорогой, одним и тем же шагом. Этого достаточно, чтобы правильно поставить часы. Я так всегда делаю.

Предположим, что дядюшка Генри завел часы перед тем, как выйти из дома, и часы в бакалейном магазине показывают точное время.

Каким образом дядюшка Генри ухитряется узнавать точное время по возвращении домой?

Поделиться:
Популярные книги

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

Приручитель женщин-монстров. Том 5

Дорничев Дмитрий
5. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 5

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Сонный лекарь 4

Голд Джон
4. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 4

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Системный Нуб

Тактарин Ринат
1. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Путь Шамана. Шаг 1: Начало

Маханенко Василий Михайлович
1. Мир Барлионы
Фантастика:
фэнтези
рпг
попаданцы
9.42
рейтинг книги
Путь Шамана. Шаг 1: Начало