Естествознание. Базовый уровень. 10 класс
Шрифт:
Эти хищники питаются зайцами и значительно сокращают их численность. Поэтому мы можем записать: зайцы + лисы -> меньше зайцев.
Однако если зайцев окажется слишком мало, лисам станет нечего есть и они начнут вымирать от голода. Поэтому мы можем также написать другое уравнение: лисы – зайцы -> меньше лис.
Попробуем решить систему этих уравнений, не прибегая к математическим вычислениям. Это будет называться качественным решением. Предположим, что в начальный момент у нас имеется некоторое число лис и достаточное число зайцев, чтобы лисы не ограничивали себя в питании. В этих условиях хищники начнут быстро размножаться и, когда их станет достаточно много, они станут съедать столько
Такая модель позволяет в известных пределах прогнозировать изменение численности обитающих на данной территории животных. Конечно, она, как любая модель, не свободна от упрощения и идеализации. Может, например, выдаться засушливое лето, и тогда наше предположение, что пища у зайцев всегда имеется в избытке, окажется неверным. В лес могут приехать охотники и сократить численность лис гораздо значительнее, чем это предполагает модель. В таком случае, если модель даёт неточные результаты, её, как было сказано, дорабатывают: вводят дополнительные факторы или исправляют алгоритмы. Любая модель, особенно в таких системах, где присутствует много случайных факторов, всегда должна быть динамичной и развивающейся.
Заканчивая разговор о математических моделях, обратим внимание ещё на одно интересное обстоятельство. Часто математические модели, разработанные для одного класса явлений, оказываются применимыми в совершенно другой области.
Рис. 29. Колебания численности популяций лисиц и зайцев
Те же математические уравнения, с помощью которых описывается взаимоотношение «хищник – жертва», с успехом используются при расчёте некоторых химических реакций. Это говорит об общности законов природы и присутствии в ней единых закономерностей.
1. Что называют моделью природного явления?
2. Перечислите этапы создания математической модели.
3. Что означает слово «алгоритм»? Приведите примеры алгоритмов, встречающихся в вашей повседневной жизни.
1. Нарисуйте график, где по оси абсцисс отложите число лисиц, а по оси ординат – число зайцев, обитающих в данном месте в данное время. Нарисуйте замкнутую кривую линию, которая будет характеризовать отношение этих чисел.
2. Возьмите два разных натуральных числа x и у, умножьте каждое на 2, произведения сложите и извлеките из суммы квадратный корень. Если корень окажется целым числом, значит x и у составляют полную пару. Найдите несколько пар, удовлетворяющих этому условию.
3. Подготовьте сообщение о применении математического моделирования в какой-либо области человеческой деятельности: электрической или космической технике, ядерной физике, экологии, сельском хозяйстве и т. д.
4. Напишите реферат на тему «Моделирование как основа научного метода познания».
§ 10 Научный метод. Гипотезы и теории
Вечная трагедия науки: уродливые факты убивают красивые гипотезы.
Прогресс состоит не в замене неверной теории на верную, а в замене одной неверной теории на другую неверную, но уточнённую.
Этапы научного исследования. Итак, в основе естественно-научных исследований лежат наблюдение, эксперимент, измерение и математическая обработка полученных результатов.
Мы знаем также, что представления об этих основных приёмах изучения окружающего мира были заложены в конце XVI – начале XVII в., главным образом благодаря трудам Галилея. В это же время стали складываться понятия об общих принципах, которым должно соответствовать научное исследование.
Рис. 30. Фрэнсис Бэкон
Одним из первых мыслителей, высказавших свою точку зрения по этому вопросу, был современник Галилея английский философ и политический деятель Фрэнсис Бэкон (1561–1626) (рис. 30). Он полагал, что такое исследование должно включать несколько этапов. Вначале исследователь обобщает имеющиеся факты, результаты наблюдений и экспериментов, выполненных им самим или другими учёными. Затем он применяет метод индукции, т. е. рассуждения от частных фактов к общим понятиям. В результате такого индуктивного рассуждения он создаёт гипотезу, т. е. высказывает предположения о тех закономерностях и причинах, которые могут лежать в основе наблюдаемых явлений. Но пока это только предположения, ведь на самом деле любую совокупность фактов можно объяснить каким-нибудь способом. Для того чтобы подтвердить правильность гипотезы, требуется предложить эксперименты для её проверки. Это должны быть такие эксперименты, которые не использовались при создании гипотезы. Для их планирования используется метод дедукции – рассуждения от общего к частному. Исследователь рассуждает так: «Если моя гипотеза верна, то в таких-то экспериментах должны получиться такие-то результаты». И наконец, осуществляется верификация гипотезы – её экспериментальная проверка. Если результаты совпадут с предполагаемыми, т. е. если гипотеза сможет предсказывать новые факты и явления, она становится научной теорией.
Таким образом, разработка любой научной теории начинается с построения гипотез. Гипотеза – это предположение о строении, организации или причинах существующих процессов или явлений. Впоследствии любая гипотеза может оказаться истинной или ложной. Многие гипотезы в течение долгого времени не могли быть доказаны, но впоследствии превратились в строго обоснованные теории. Другие же, хотя и принятые в своё время большинством учёных, как, например, теории флогистона или теплорода, были в дальнейшем опровергнуты более строгими экспериментами. Это обстоятельство вовсе не означает, что окончательно не доказанные гипотезы не должны приниматься во внимание учёным сообществом. Как писал Ф. Энгельс,
«если бы мы захотели ждать, пока материал будет готов в чистом виде для закона, то это значило бы приостановить до тех пор мыслящее исследование, и уже по одному этому мы никогда не получили бы закона».
История науки знает случаи, когда неправильные гипотезы послужили основанием для создания абсолютно правильных теорий. Мы узнаем в дальнейшем, что ошибочная теория теплорода привела к созданию одной из важнейших наук – термодинамики. В процессе развития научной мысли по мере верификации (экспериментальной проверки), уточнения существующих моделей, увеличения или уменьшения степени идеализации некоторые гипотезы отбрасываются, а другие становятся непреложными научными теориями. При этом надо заметить, что первые составляют явное большинство, что дало основание французскому математику А. Пуанкаре заметить, что «наука – это кладбище гипотез».