Эволюция человека том 2 Обезьяны нейроны и душа 2011
Шрифт:
Сила переданного сигнала, то есть размер порции нейромедиатора, выброшенного нервным окончанием, не зависит от силы потенциала действия. Последнюю можно, как в компьютере, считать равной 0 или 1 — все или ничего. Размер выброшенной порции медиатора зависит лишь от состояния нервного окончания в данный момент. Чем определяется это состояние, будет сказано ниже. Пока лишь запомним, что порция может быть разной, а от потенциала действия зависит лишь, будет она выброшена или нет.
Механизм возбуждения нейрона основан на перекачке заряженных частиц (ионов) из цитоплазмы клетки во внешнюю среду или обратно. В спокойном состоянии мембрана нейрона поляризована: у ее внутренней стороны скапливаются отрицательно заряженные частицы, у наружной преобладают заряженные положительно, в том числе ионы натрия Na+. Если нейрон "решает" возбудиться, в
Деполяризация "заразна": когда один участок мембраны деполяризуется, это стимулирует деполяризацию соседних участков. В результате волна деполяризации быстро бежит по аксону. Это, собственно, и есть потенциал действия, он же нервный импульс.
После каждого импульса нейрону нужно некоторое время, чтобы перекачать ионы натрия из клетки обратно на наружную сторону мембраны и тем самым снова привести мембрану в "рабочее", то есть поляризованное состояние. Пока это не сделано, нейрон не может сгенерировать новый нервный импульс.
На самом деле, конечно, все гораздо сложнее (это моя "любимая" фраза. Ее можно вставлять после почти каждого высказывания, относящегося к сфере естественных наук, и это будет правдой. Конечно, жизнь - штука очень сложная, поэтому любой биологический вывод, теория или модель всегда упрощает реальность. В устах опытных демагогов фразы типа "вы все упрощаете", "в действительности все сложнее" (вариант — "не занимайтесь редукционизмом!") иногда становятся чем-то вроде универсального оружия против любых научных идей. Защититься от таких умников помогает следующая байка, восходящая к одному из рассказов Борхеса (Фрит, 2010). Говорят, что в некоей стране географы приобрели настолько большое влияние, что им предоставили возможность сделать самую подробную в мире географическую карту. По размеру она была равна всей стране и совпадала с ней во всех деталях. Пользы от этой карты не было никакой). Описанная картина так сильно упрощена, что автор даже опасается, как бы специалисты-нейробиологи не обвинили его в дезинформировании населения. Но это, напомню, не учебник, а для понимания того, о чем пойдет речь в этой и последующих главах, сказанного достаточно. Более полную и подробную информацию о работе нейронов читатель может без труда найти в соответствующих учебниках, справочниках или в интернете. Достаточно сделать поиск по словам "нейрон", "синапс" и "потенциал действия".
Итак, нейрон собирает большое количество разнородной информации и обобщает (интегрирует) ее, сводя все разнообразие полученных сведений к выбору одного из двух решений: "выстрелить" потенциалом действия, передав тем самым обобщенный итог своих раздумий другим нейронам, или не делать этого. Отсутствие сигнала тоже в некотором смысле является сигналом: оно сигнализирует о том, что данный нейрон, обобщив все доступные ему данные, принял решение пока не возбуждаться.
Свойственный нейронам максимализм (принцип "все или ничего") не абсолютен. Это справедливо только для отдельного потенциала действия. Но нейроны работают в реальном времени, и когда они получают очень много возбуждающих сигналов, они разражаются быстрой серией потенциалов действия, следующих один за другим, — строчат как пулемет (едва успевая перед каждым новым "выстрелом" перекачать ионы натрия из клетки наружу). Если возбуждающих сигналов становится меньше, частота импульсов соответственно снижается. Таким образом, нейрон может передавать и количественную информацию, которая кодируется частотой импульсов.
Сегодня, когда каждый человек хоть немного, но знаком с принципами работы компьютеров, никому из прочитавших это описание, наверное, не нужно долго объяснять, что нейрон — превосходный элементарный блок для сборки вычислительных устройств любой степени сложности. Даже таких сложных, как человеческий разум.
В мозге человека, по современным оценкам, примерно 100 млрд (1011) нейронов (в мозге мыши — около 107, в мозге мушки дрозофилы — примерно 105). Типичный нейрон имеет от 103 до 104 синапсов. Итого получаем 1014—1015 синапсов на душу населения. Даже самое примитивное, сверхупрощенное и сверхсжатое описание структуры синаптических
Чем мозг отличается от компьютера
Некоторые отличия мы уже знаем. В компьютере все сигналы, которыми обмениваются элементы логических схем, имеют одну и ту же природу — электрическую, и сигналы эти могут принимать только одно из двух значений — 0 или 1. Передача информации в мозге основана не на двоичном коде, а скорее на троичном. Если возбуждающий сигнал соотнести с единицей, а его отсутствие — с нулем, то тормозящий сигнал, пожалуй, можно уподобить минус единице. Но это все-таки чрезмерное упрощение. На самом деле в мозге используются химические сигналы нескольких десятков типов — все равно как если бы в компьютере использовались десятки разных электрических токов (или наряду с электричеством использовались световые лучи, струйки воды, зубчатые передачи, потоки воздуха и много всего другого), а нули и единицы могли бы иметь десятки разных. .. ну, скажем, цветов или каких-то иных качеств.
В принципе можно представить себе мозг, работающий только на одном нейромедиаторе. Или на двух — одном возбуждающем и одном тормозящем. Но тогда пришлось бы обходиться без нейромодуляторов и без внесинаптической передачи. Выброс универсального нейромедиатора во внеклеточное пространство и его восприятие внесинаптическими рецепторами в таком мозге были бы похожи на короткое замыкание. Без возможности выбрасывать разные медиаторы по выбору внесинаптическая передача потеряла бы смысл. Значит, все логические схемы пришлось бы четко и однозначно "прошивать" в железе, то есть фиксировать в системе синаптических связей. Это создало бы технические трудности при кодировании таких "общесистемных" сигналов (или настроек), как эмоции. Это создало бы еще более серьезные проблемы с гормональной регуляцией жизнедеятельности, поскольку гормональная регуляция — естественное продолжение нервной. Многие нейромедиаторы по совместительству являются и важнейшими гормонами (Жуков, 2007). Ко всем органам, работа которых управляется гормонами, пришлось бы "тянуть" дополнительные нервы — и это только одна из проблем.
Я готов допустить, что эти трудности преодолимы. Не исключено, что где-то на других планетах живут существа с мозгом, работающим на двух медиаторах. Но на нашей планете множественность нейромедиаторов является для нас, животных, очень древним эволюционным наследием, которое тянется за нами с тех незапамятных времен (более 700 млн лет назад), когда у примитивных многоклеточных еще не было нормальной нервной системы с синапсами, а клетки общались между собой при помощи разнообразных химических сигналов. Химическая регуляция взаимоотношений между клетками эволюционно гораздо древнее, чем нервная система. Многие нейромедиаторы и нейрогормоны пришли к нам прямиком из эпохи первых многоклеточных или даже из еще более ранней эпохи социальных одноклеточных — предков животных. Задолго до того, как некоторые из клеток стали нейронами, клетки уже общались между собой при помощи тех же самых нейромедиаторов и гормонов, которые и поныне используются в нервно-гормональной системе высших животных.
Еще одно ключевое отличие мозга от компьютера связано с тем, что сила сигнала, передаваемого от одного нейрона к другому (количество выделенного нейромедиатора), может меняться не дискретно (0 или 1), а плавно. Дискретность распространяется только на факт наличия или отсутствия сигнала — выброшенной нервным окончанием порции нейромедиатора, но не на размер этой порции. Плавно может меняться и чувствительность принимающего нейрона к сигналам, поступающим через данный синапс. Эта чувствительность зависит от количества и качества рецепторов, сидящих на постсинаптической мембране принимающего нейрона.
Самое же главное отличие состоит в том, что проводимость каждого конкретного синапса (определяемая количеством нейромедиатора, поступающего через пресинаптическую мембрану, и чувствительностью постсинаптической мембраны к этому нейромедиатору) может меняться в зависимости от обстоятельств. Это свойство называют синаптической пластичностью. Именно синаптическая пластичность лежит в основе способности комплексов взаимосвязанных нейронов (нейронных контуров или сетей) к запоминанию и обучению.